mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 01:06:00 +00:00
[Inference/Kernel] refactor kvcache manager and rotary_embedding and kvcache_memcpy oper… (#5663)
* refactor kvcache manager and rotary_embedding and kvcache_memcpy operator * refactor decode_kv_cache_memcpy * enable alibi in pagedattention
This commit is contained in:
@@ -20,7 +20,7 @@ inference_ops = InferenceOpsLoader().load()
|
||||
configs = [
|
||||
triton.testing.Benchmark(
|
||||
x_names=["MAX_NUM_BLOCKS_PER_SEQ"],
|
||||
x_vals=[2**i for i in range(3, 8)],
|
||||
x_vals=[2**i for i in range(2, 8)],
|
||||
line_arg="provider",
|
||||
line_vals=[
|
||||
"vllm_paged_decoding_attention",
|
||||
@@ -113,6 +113,8 @@ def benchmark_flash_decoding_attention(
|
||||
kv_max_split_num = (max_seq_len_across_batch + BLOCK_SIZE - 1) // BLOCK_SIZE
|
||||
output = torch.empty((BATCH_SIZE, NUM_ATTN_HEADS, HEAD_SIZE), dtype=dtype, device=device)
|
||||
sm_scale = 1.0 / (HEAD_SIZE**0.5)
|
||||
alibi_slopes = None
|
||||
kv_scale = 1.0
|
||||
|
||||
mid_output = torch.empty(
|
||||
size=(BATCH_SIZE, NUM_ATTN_HEADS, kv_max_split_num, HEAD_SIZE), dtype=torch.float32, device=device
|
||||
@@ -136,6 +138,7 @@ def benchmark_flash_decoding_attention(
|
||||
max_seq_len_across_batch,
|
||||
alibi_slopes,
|
||||
"auto",
|
||||
kv_scale,
|
||||
)
|
||||
elif provider == "triton_flash_decoding_attention":
|
||||
fn = lambda: flash_decoding_attention(
|
||||
@@ -164,6 +167,7 @@ def benchmark_flash_decoding_attention(
|
||||
max_seq_len_across_batch,
|
||||
mid_output,
|
||||
mid_output_lse,
|
||||
alibi_slopes,
|
||||
sm_scale,
|
||||
)
|
||||
else:
|
||||
|
@@ -2,7 +2,11 @@ import torch
|
||||
|
||||
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
||||
from colossalai.kernel.triton import copy_kv_to_blocked_cache, decoding_fused_rotary_embedding, rotary_embedding
|
||||
from tests.test_infer.test_ops.triton.kernel_utils import mock_alloc_block_table_and_kvcache_v2, mock_alloc_single_token
|
||||
from tests.test_infer.test_ops.triton.kernel_utils import (
|
||||
mock_alloc_block_table_and_kvcache_v2,
|
||||
mock_alloc_block_table_and_kvcache_v3,
|
||||
mock_alloc_single_token,
|
||||
)
|
||||
|
||||
inference_ops = InferenceOpsLoader().load()
|
||||
|
||||
@@ -68,11 +72,17 @@ def benchmark_rotary_emb(
|
||||
cache_shape = (BATCH_SIZE * max_num_blocks_per_seq, num_kv_heads, block_size, head_dim)
|
||||
k_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
|
||||
v_cache = torch.zeros(size=cache_shape, dtype=dtype, device="cuda")
|
||||
x = 16 // torch.tensor([], dtype=dtype).element_size()
|
||||
new_cache_shape = (BATCH_SIZE * max_num_blocks_per_seq, num_kv_heads, head_dim // x, block_size, x)
|
||||
new_k_cache = torch.zeros(size=new_cache_shape, dtype=dtype, device="cuda")
|
||||
|
||||
past_kv_seq_lengths = torch.tensor([SEQ_LEN - 1 for _ in range(BATCH_SIZE)], dtype=torch.int32, device="cuda")
|
||||
block_tables = mock_alloc_block_table_and_kvcache_v2(
|
||||
k, v, k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_num_blocks_per_seq, block_size
|
||||
)
|
||||
_ = mock_alloc_block_table_and_kvcache_v3(
|
||||
k, v, new_k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_num_blocks_per_seq, block_size
|
||||
)
|
||||
new_k = torch.randn((BATCH_SIZE, num_kv_heads, head_dim), dtype=dtype, device="cuda")
|
||||
new_q = torch.randn_like(new_k)
|
||||
new_v = torch.randn_like(new_k)
|
||||
@@ -94,12 +104,12 @@ def benchmark_rotary_emb(
|
||||
)
|
||||
elif provider == "no_fused_cuda_rotary_emb_func":
|
||||
fn = lambda: [
|
||||
inference_ops.rotary_embedding(new_q, new_k, cos, sin),
|
||||
inference_ops.decode_kv_cache_memcpy(new_k, new_v, k_cache, v_cache, kv_seq_lengths, block_tables),
|
||||
inference_ops.rotary_embedding(new_q, new_k, cos, sin, True),
|
||||
inference_ops.decode_kv_cache_memcpy(new_k, new_v, new_k_cache, v_cache, kv_seq_lengths, block_tables),
|
||||
]
|
||||
elif provider == "fused_cuda_rotary_emb_func":
|
||||
fn = lambda: inference_ops.rotary_embedding_and_cache_copy(
|
||||
new_q, new_k, new_v, cos, sin, k_cache, v_cache, kv_seq_lengths, block_tables
|
||||
new_q, new_k, new_v, cos, sin, new_k_cache, v_cache, kv_seq_lengths, block_tables, True
|
||||
)
|
||||
else:
|
||||
raise ValueError("Undefined provider")
|
||||
|
@@ -4,6 +4,7 @@ from colossalai.inference.modeling.layers.attention import copy_to_cache
|
||||
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
||||
from colossalai.kernel.triton import copy_kv_to_blocked_cache
|
||||
from colossalai.utils import get_current_device
|
||||
from tests.test_infer.test_ops.cuda.test_kv_cache_memcpy import prepare_data as prepare_data_new_kcache_layout
|
||||
from tests.test_infer.test_ops.triton.test_kvcache_copy import prepare_data
|
||||
|
||||
try:
|
||||
@@ -68,6 +69,9 @@ def benchmark_kvcache_copy(
|
||||
elif provider == "triton_copy_func":
|
||||
fn = lambda: copy_kv_to_blocked_cache(new_k, new_v, k_cache, v_cache, context_lengths, block_tables)
|
||||
elif provider == "cuda_copy_func":
|
||||
_, _, k_cache, _, _, _, _, _, _ = prepare_data_new_kcache_layout(
|
||||
bsz, num_kv_heads, block_size, max_seq_len // block_size, context_lengths - 1, device, dtype
|
||||
)
|
||||
new_k = new_k.squeeze(1) if new_k.dim() == 4 else new_k
|
||||
new_v = new_v.squeeze(1) if new_v.dim() == 4 else new_v
|
||||
fn = lambda: inference_ops.decode_kv_cache_memcpy(new_k, new_v, k_cache, v_cache, context_lengths, block_tables)
|
||||
|
Reference in New Issue
Block a user