mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-03 17:19:51 +00:00
[Inference] Adapt Baichuan2-13B TP (#5659)
* adapt to baichuan2 13B * add baichuan2 13B TP * update baichuan tp logic * rm unused code * Fix TP logic * fix alibi slopes tp logic * rm nn.Module * Polished the code. * change BAICHUAN_MODEL_NAME_OR_PATH * Modified the logic for loading Baichuan weights. * fix typos
This commit is contained in:
parent
808ee6e4ad
commit
5f00002e43
@ -112,11 +112,23 @@ class InferenceEngine:
|
||||
model_policy (Policy): the policy to replace the model
|
||||
"""
|
||||
|
||||
casuallm = None
|
||||
if isinstance(model_or_path, str):
|
||||
try:
|
||||
hf_config = AutoConfig.from_pretrained(model_or_path, trust_remote_code=True)
|
||||
arch = getattr(hf_config, "architectures")[0]
|
||||
if arch in _supported_models.keys():
|
||||
casuallm = _supported_models[arch](hf_config)
|
||||
if isinstance(casuallm, AutoModelForCausalLM):
|
||||
# NOTE(caidi) It's necessary to add half() here, otherwise baichuan13B will overflow the memory.
|
||||
model = (
|
||||
AutoModelForCausalLM.from_pretrained(model_or_path, trust_remote_code=True).half().cuda()
|
||||
)
|
||||
else:
|
||||
model = _supported_models[arch](hf_config)
|
||||
else:
|
||||
raise ValueError(f"Model {arch} is not supported.")
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(
|
||||
f"An exception occurred during loading model: {e}, model should be loaded by transformers\n"
|
||||
@ -164,7 +176,7 @@ class InferenceEngine:
|
||||
f"After the shard, Rank: [{dist.get_rank()}], model size: {get_model_size(self.model)} GB, model's device is: {model.device}"
|
||||
)
|
||||
|
||||
if isinstance(model_or_path, str):
|
||||
if isinstance(model_or_path, str) and not isinstance(casuallm, AutoModelForCausalLM):
|
||||
from colossalai.inference.core.plugin import InferCheckpoint_io
|
||||
|
||||
cpt_io = InferCheckpoint_io()
|
||||
|
43
colossalai/inference/modeling/layers/baichuan_tp_linear.py
Normal file
43
colossalai/inference/modeling/layers/baichuan_tp_linear.py
Normal file
@ -0,0 +1,43 @@
|
||||
from typing import List, Union
|
||||
|
||||
import torch.nn as nn
|
||||
from torch.distributed import ProcessGroup
|
||||
|
||||
from colossalai.shardformer.layer import Linear1D_Col
|
||||
from colossalai.shardformer.layer.parallel_module import ParallelModule
|
||||
|
||||
|
||||
class BaichuanLMHeadLinear1D_Col(Linear1D_Col):
|
||||
@staticmethod
|
||||
def from_native_module(
|
||||
module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], *args, **kwargs
|
||||
) -> ParallelModule:
|
||||
module.in_features = module.weight.size(1)
|
||||
module.out_features = module.weight.size(0)
|
||||
module.bias = None
|
||||
module.weight.data = nn.functional.normalize(module.weight)
|
||||
|
||||
return Linear1D_Col.from_native_module(
|
||||
module,
|
||||
process_group,
|
||||
*args,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class BaichuanWpackLinear1D_Col(Linear1D_Col):
|
||||
@staticmethod
|
||||
def from_native_module(
|
||||
module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], *args, **kwargs
|
||||
) -> ParallelModule:
|
||||
in_features = module.in_features * 3
|
||||
out_features = module.out_features // 3
|
||||
module.weight.data = module.weight.view(3, out_features, -1).transpose(0, 1).reshape(out_features, in_features)
|
||||
module.bias = None
|
||||
|
||||
return Linear1D_Col.from_native_module(
|
||||
module,
|
||||
process_group,
|
||||
*args,
|
||||
**kwargs,
|
||||
)
|
@ -1,11 +1,14 @@
|
||||
# This code is adapted from huggingface baichuan model: hhttps://huggingface.co/baichuan-inc/Baichuan2-13B-Base/blob/main/modeling_baichuan.py
|
||||
import itertools
|
||||
import math
|
||||
from typing import Optional, Tuple
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.distributed import ProcessGroup
|
||||
|
||||
from colossalai.inference.flash_decoding_utils import FDIntermTensors
|
||||
from colossalai.inference.modeling.models.nopadding_llama import NopadLlamaMLP
|
||||
from colossalai.kernel.kernel_loader import InferenceOpsLoader
|
||||
from colossalai.kernel.triton import (
|
||||
context_attention_unpadded,
|
||||
@ -16,6 +19,18 @@ from colossalai.kernel.triton import (
|
||||
rotary_embedding,
|
||||
)
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.shardformer.layer.parallel_module import ParallelModule
|
||||
from colossalai.tensor.d_tensor import Layout, distribute_tensor, is_distributed_tensor
|
||||
|
||||
logger = get_dist_logger(__name__)
|
||||
|
||||
try:
|
||||
from flash_attn import flash_attn_varlen_func
|
||||
|
||||
use_flash_attn2 = True
|
||||
except ImportError:
|
||||
use_flash_attn2 = False
|
||||
logger.warning(f"flash_attn2 has not been installed yet, we will use triton flash attn instead.")
|
||||
|
||||
logger = get_dist_logger(__name__)
|
||||
|
||||
@ -78,14 +93,18 @@ def baichuan_rmsnorm_forward(
|
||||
return rms_layernorm(hidden_states, self.weight.data, eps, norm_output, residual)
|
||||
|
||||
|
||||
class NopadBaichuanAttention(nn.Module):
|
||||
class NopadBaichuanAttention(ParallelModule):
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
attn_qproj_w: torch.Tensor = None,
|
||||
attn_kproj_w: torch.Tensor = None,
|
||||
attn_vproj_w: torch.Tensor = None,
|
||||
attn_oproj_w: torch.Tensor = None,
|
||||
attn_oproj: ParallelModule = None,
|
||||
num_heads: int = None,
|
||||
hidden_size: int = None,
|
||||
process_group: ProcessGroup = None,
|
||||
helper_layout: Layout = None,
|
||||
):
|
||||
"""This layer will replace the BaichuanAttention.
|
||||
|
||||
@ -94,26 +113,35 @@ class NopadBaichuanAttention(nn.Module):
|
||||
attn_qproj_w (torch.Tensor, optional): The transposed q_proj weight. Defaults to None.
|
||||
attn_kproj_w (torch.Tensor, optional): The transposed k_proj weight. Defaults to None.
|
||||
attn_vproj_w (torch.Tensor, optional): The transposed v_proj weight. Defaults to None.
|
||||
attn_oproj_w (torch.Tensor, optional): The transposed o_proj weight. Defaults to None.
|
||||
attn_oproj (Linear1D_Row, optional): The Linear1D_Row o_proj weight. Defaults to None.
|
||||
"""
|
||||
super().__init__()
|
||||
self.o_proj_weight = attn_oproj_w
|
||||
ParallelModule.__init__(self)
|
||||
self.o_proj = attn_oproj
|
||||
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
self.process_group = process_group
|
||||
qkv_weight_list = [attn_qproj_w.transpose(0, 1), attn_kproj_w.transpose(0, 1), attn_vproj_w.transpose(0, 1)]
|
||||
self.qkv_weight = nn.Parameter(torch.stack(qkv_weight_list, dim=0))
|
||||
|
||||
self.helper_layout = helper_layout
|
||||
|
||||
self.alibi_slopes = None
|
||||
self.use_alibi_attn = False
|
||||
if self.hidden_size == 5120:
|
||||
# Used for Baichuan13B
|
||||
if config.hidden_size == 5120:
|
||||
slopes_start = self.process_group.rank() * num_heads
|
||||
self.use_alibi_attn = True
|
||||
self.alibi_slopes = get_alibi_slopes(self.num_heads, device=attn_qproj_w.device)
|
||||
|
||||
qkv_weight_list = [attn_qproj_w, attn_kproj_w, attn_vproj_w]
|
||||
self.qkv_weight = torch.stack(qkv_weight_list, dim=0)
|
||||
self.alibi_slopes = get_alibi_slopes(config.num_attention_heads, device=attn_qproj_w.device)[
|
||||
slopes_start : slopes_start + num_heads
|
||||
].contiguous()
|
||||
|
||||
@staticmethod
|
||||
def from_native_module(module: nn.Module, *args, **kwargs) -> "NopadBaichuanAttention":
|
||||
def from_native_module(
|
||||
module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], *args, **kwargs
|
||||
) -> "NopadBaichuanAttention":
|
||||
"""Used for initialize the weight of NopadBaichuanAttention by origin BaichuanAttention.
|
||||
|
||||
Args:
|
||||
@ -121,24 +149,76 @@ class NopadBaichuanAttention(nn.Module):
|
||||
"""
|
||||
|
||||
config = module.config
|
||||
q_proj_w, k_proj_w, v_proj_w = module.W_pack.weight.view((module.hidden_size, 3, -1)).transpose(0, 1)
|
||||
|
||||
q_proj_w, k_proj_w, v_proj_w = module.W_pack.weight.view((3, module.hidden_size, module.hidden_size))
|
||||
attn_qproj_w = q_proj_w
|
||||
attn_kproj_w = k_proj_w
|
||||
attn_vproj_w = v_proj_w
|
||||
attn_oproj = module.o_proj
|
||||
|
||||
attn_qproj_w = q_proj_w.transpose(0, 1)
|
||||
attn_kproj_w = k_proj_w.transpose(0, 1)
|
||||
attn_vproj_w = v_proj_w.transpose(0, 1)
|
||||
attn_oproj_w = module.o_proj.weight.transpose(0, 1)
|
||||
helper_layout = (
|
||||
module.W_pack.weight.dist_layout
|
||||
) # NOTE this is a hack for the right load/shard of qkv_weight(used in _load_from_state_dict)
|
||||
|
||||
attn_layer = NopadBaichuanAttention(
|
||||
config=config,
|
||||
attn_qproj_w=attn_qproj_w,
|
||||
attn_kproj_w=attn_kproj_w,
|
||||
attn_vproj_w=attn_vproj_w,
|
||||
attn_oproj_w=attn_oproj_w,
|
||||
attn_oproj=attn_oproj,
|
||||
num_heads=module.num_heads,
|
||||
hidden_size=module.hidden_size,
|
||||
process_group=process_group,
|
||||
helper_layout=helper_layout,
|
||||
)
|
||||
|
||||
return attn_layer
|
||||
|
||||
def _load_from_state_dict(
|
||||
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
||||
):
|
||||
for hook in self._load_state_dict_pre_hooks.values():
|
||||
hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
||||
|
||||
persistent_buffers = {k: v for k, v in self._buffers.items() if k not in self._non_persistent_buffers_set}
|
||||
local_name_params = itertools.chain(self._parameters.items(), persistent_buffers.items())
|
||||
local_state = {k: v for k, v in local_name_params if v is not None}
|
||||
|
||||
key = "qkv_weight"
|
||||
qkv_w = state_dict[prefix + "W_pack.weight"]
|
||||
|
||||
in_features = qkv_w.size(1)
|
||||
out_features = qkv_w.size(0) // 3
|
||||
|
||||
qkv_w.data = qkv_w.view((3, out_features, -1)).transpose(0, 1).reshape(out_features, in_features * 3)
|
||||
|
||||
device_mesh = self.helper_layout.device_mesh
|
||||
sharding_spec = self.helper_layout.sharding_spec
|
||||
qkv_w = distribute_tensor(qkv_w, device_mesh, sharding_spec)
|
||||
|
||||
qkv_w = qkv_w.transpose(0, 1).reshape(3, in_features, -1)
|
||||
input_param = nn.Parameter(
|
||||
qkv_w
|
||||
) # NOTE qkv_weight doesn't have to be a distensor, Like input_param = sharded_tensor_to_param(input_param)
|
||||
|
||||
param = local_state[key]
|
||||
|
||||
try:
|
||||
with torch.no_grad():
|
||||
param.copy_(input_param)
|
||||
except Exception as ex:
|
||||
error_msgs.append(
|
||||
'While copying the parameter named "{}", '
|
||||
"whose dimensions in the model are {} and "
|
||||
"whose dimensions in the checkpoint are {}, "
|
||||
"an exception occurred : {}.".format(key, param.size(), input_param.size(), ex.args)
|
||||
)
|
||||
|
||||
strict = False # to avoid unexpected_keys
|
||||
super()._load_from_state_dict(
|
||||
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
@ -292,56 +372,38 @@ class NopadBaichuanAttention(nn.Module):
|
||||
)
|
||||
|
||||
attn_output = attn_output.view(-1, self.hidden_size)
|
||||
attn_output = torch.mm(attn_output, self.o_proj_weight)
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
return attn_output
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return f"qkv_weight_proj MergedLinear1D_Col: in_features={self.qkv_weight.shape[1]}x3, out_features={self.qkv_weight.shape[2]}, bias=False"
|
||||
|
||||
|
||||
# NOTE This will cause difference as out length increases.
|
||||
class NopadBaichuanMLP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
mlp_gproj_w: torch.Tensor = None,
|
||||
mlp_uproj_w: torch.Tensor = None,
|
||||
mlp_dproj_w: torch.Tensor = None,
|
||||
):
|
||||
"""This layer will replace the BaichuanAttention.
|
||||
|
||||
Args:
|
||||
mlp_gproj_w (torch.Tensor, optional): The transposed gate_proj weight. Defaults to None.
|
||||
mlp_uproj_w (torch.Tensor, optional): The transposed up_proj weight. Defaults to None.
|
||||
mlp_dproj_w (torch.Tensor, optional): The transposed down_proj weight. Defaults to None.
|
||||
"""
|
||||
super().__init__()
|
||||
self.gate_up_weight = torch.stack([mlp_gproj_w, mlp_uproj_w], dim=0)
|
||||
self.down_proj_weight = mlp_dproj_w
|
||||
|
||||
class NopadBaichuanMLP(NopadLlamaMLP):
|
||||
@staticmethod
|
||||
def from_native_module(module: nn.Module, *args, **kwargs) -> nn.Module:
|
||||
def from_native_module(
|
||||
module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], *args, **kwargs
|
||||
) -> ParallelModule:
|
||||
"""Used for initialize the weight of NopadBaichuanMLP by origin MLP(Baichuan).
|
||||
|
||||
Args:
|
||||
module (nn.Module): The origin MLP(Baichuan) layer.
|
||||
"""
|
||||
|
||||
mlp_gproj_w = module.gate_proj.weight.transpose(0, 1)
|
||||
mlp_uproj_w = module.up_proj.weight.transpose(0, 1)
|
||||
mlp_dproj_w = module.down_proj.weight.transpose(0, 1)
|
||||
mlp_gproj_w = module.gate_proj.weight
|
||||
assert is_distributed_tensor(
|
||||
module.gate_proj.weight
|
||||
), "gate_proj.weight must be dtensor so we could get the layout of the weight"
|
||||
mlp_uproj_w = module.up_proj.weight
|
||||
mlp_dproj = module.down_proj
|
||||
|
||||
mlp_layer = NopadBaichuanMLP(
|
||||
config=None,
|
||||
mlp_gproj_w=mlp_gproj_w,
|
||||
mlp_uproj_w=mlp_uproj_w,
|
||||
mlp_dproj_w=mlp_dproj_w,
|
||||
mlp_dproj=mlp_dproj,
|
||||
process_group=process_group,
|
||||
)
|
||||
|
||||
return mlp_layer
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (torch.Tensor): input to the layer of shape [token_num, embed_dim].
|
||||
"""
|
||||
hidden_states = hidden_states.expand(2, -1, -1)
|
||||
gate_up_proj_out = torch.bmm(hidden_states, self.gate_up_weight)
|
||||
act_out = inference_ops.silu_and_mul(gate_up_proj_out)
|
||||
return torch.mm(act_out, self.down_proj_weight)
|
||||
|
@ -1,6 +1,7 @@
|
||||
import torch.nn as nn
|
||||
from torch.nn import Parameter
|
||||
|
||||
from colossalai.inference.modeling.layers.baichuan_tp_linear import (
|
||||
BaichuanLMHeadLinear1D_Col,
|
||||
BaichuanWpackLinear1D_Col,
|
||||
)
|
||||
from colossalai.inference.modeling.models.nopadding_baichuan import (
|
||||
NopadBaichuanAttention,
|
||||
NopadBaichuanMLP,
|
||||
@ -12,6 +13,7 @@ from colossalai.inference.modeling.models.nopadding_llama import (
|
||||
llama_model_forward,
|
||||
)
|
||||
from colossalai.inference.utils import init_to_get_rotary
|
||||
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
|
||||
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
|
||||
from colossalai.shardformer.policies.llama import LlamaForCausalLMPolicy
|
||||
|
||||
@ -23,30 +25,64 @@ class NoPaddingBaichuanModelInferPolicy(LlamaForCausalLMPolicy):
|
||||
def module_policy(self):
|
||||
policy = super().module_policy()
|
||||
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
decoder_attribute_replacement = {
|
||||
"lm_head.weight": Parameter(nn.functional.normalize(self.model.lm_head.weight), requires_grad=False),
|
||||
"self_attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
||||
"self_attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
||||
}
|
||||
policy["BaichuanForCausalLM"] = ModulePolicyDescription(
|
||||
attribute_replacement=decoder_attribute_replacement,
|
||||
if getattr(self.model.config, "num_key_value_heads", False):
|
||||
decoder_attribute_replacement["self_attn.num_key_value_heads"] = (
|
||||
self.model.config.num_key_value_heads // self.shard_config.tensor_parallel_size
|
||||
)
|
||||
else:
|
||||
decoder_attribute_replacement = None
|
||||
|
||||
# used for relpacing Baichuan 7B/13B decoder layer
|
||||
for layer_name in ["DecoderLayer", "BaichuanLayer"]:
|
||||
policy[layer_name] = ModulePolicyDescription(
|
||||
# used for Baichuan 7B and 13B for baichuan DecoderLayer
|
||||
for DecoderLayer in ["DecoderLayer", "BaichuanLayer"]:
|
||||
policy[DecoderLayer] = ModulePolicyDescription(
|
||||
attribute_replacement=decoder_attribute_replacement,
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.gate_proj",
|
||||
target_module=Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.up_proj",
|
||||
target_module=Linear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.down_proj",
|
||||
target_module=Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp",
|
||||
target_module=NopadBaichuanMLP,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.W_pack",
|
||||
target_module=BaichuanWpackLinear1D_Col,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn.o_proj",
|
||||
target_module=Linear1D_Row,
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attn",
|
||||
target_module=NopadBaichuanAttention,
|
||||
),
|
||||
]
|
||||
],
|
||||
)
|
||||
|
||||
self.append_or_create_method_replacement(
|
||||
description={"forward": llama_decoder_layer_forward}, policy=policy, target_key=layer_name
|
||||
description={"forward": llama_decoder_layer_forward}, policy=policy, target_key=DecoderLayer
|
||||
)
|
||||
|
||||
policy["BaichuanForCausalLM"] = ModulePolicyDescription(
|
||||
sub_module_replacement=[
|
||||
SubModuleReplacementDescription(
|
||||
suffix="lm_head", target_module=BaichuanLMHeadLinear1D_Col, kwargs={"gather_output": True}
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
self.append_or_create_method_replacement(
|
||||
@ -55,7 +91,6 @@ class NoPaddingBaichuanModelInferPolicy(LlamaForCausalLMPolicy):
|
||||
self.append_or_create_method_replacement(
|
||||
description={"forward": llama_model_forward}, policy=policy, target_key="BaichuanModel"
|
||||
)
|
||||
|
||||
self.append_or_create_method_replacement(
|
||||
description={"forward": baichuan_rmsnorm_forward}, policy=policy, target_key="RMSNorm"
|
||||
)
|
||||
|
@ -4,26 +4,29 @@ import random
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.multiprocessing import Manager
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
||||
|
||||
import colossalai
|
||||
from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig
|
||||
from colossalai.inference.core.engine import InferenceEngine
|
||||
from colossalai.inference.flash_decoding_utils import FDIntermTensors
|
||||
from colossalai.inference.modeling.policy import NoPaddingBaichuanModelInferPolicy
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
|
||||
# BAICHUAN_MODEL_NAME_OR_PATH = "baichuan-inc/Baichuan2-7B-Base"
|
||||
BAICHUAN_MODEL_NAME_OR_PATH = "/home/data/models/Baichuan2-13B-Base"
|
||||
BAICHUAN_MODEL_NAME_OR_PATH = "baichuan-inc/Baichuan2-13B-Base"
|
||||
|
||||
|
||||
def setup_seed(seed):
|
||||
torch.manual_seed(seed)
|
||||
torch.random.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
np.random.seed(seed)
|
||||
random.seed(seed)
|
||||
|
||||
|
||||
def check_inference_engine(use_engine=False, do_sample=False, use_cuda_kernel=False, prompt_template=None):
|
||||
def check_inference_engine(use_engine=False, do_sample=False, use_cuda_kernel=False, prompt_template=None, policy=None):
|
||||
setup_seed(20)
|
||||
tokenizer = AutoTokenizer.from_pretrained(BAICHUAN_MODEL_NAME_OR_PATH, use_fast=False, trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(BAICHUAN_MODEL_NAME_OR_PATH, trust_remote_code=True).half().cuda()
|
||||
@ -34,7 +37,6 @@ def check_inference_engine(use_engine=False, do_sample=False, use_cuda_kernel=Fa
|
||||
]
|
||||
|
||||
output_len = 38
|
||||
do_sample = do_sample
|
||||
|
||||
if do_sample:
|
||||
top_p = 0.5
|
||||
@ -45,9 +47,12 @@ def check_inference_engine(use_engine=False, do_sample=False, use_cuda_kernel=Fa
|
||||
|
||||
if use_engine:
|
||||
inference_config = InferenceConfig(
|
||||
max_output_len=output_len, prompt_template=prompt_template, use_cuda_kernel=use_cuda_kernel
|
||||
max_output_len=output_len,
|
||||
prompt_template=prompt_template,
|
||||
use_cuda_kernel=use_cuda_kernel,
|
||||
tp_size=dist.get_world_size(),
|
||||
)
|
||||
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
|
||||
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True, model_policy=policy)
|
||||
assert inference_engine.generation_config.max_new_tokens == output_len
|
||||
inference_engine.add_request(prompts=inputs)
|
||||
assert inference_engine.request_handler._has_waiting()
|
||||
@ -70,31 +75,54 @@ def check_inference_engine(use_engine=False, do_sample=False, use_cuda_kernel=Fa
|
||||
)
|
||||
outputs = model.generate(inputs, generation_config=generation_config)
|
||||
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
@parameterize("prompt_template", [None, "baichuan"])
|
||||
@parameterize("do_sample", [True, False])
|
||||
@parameterize("use_cuda_kernel", [True, False])
|
||||
def check_output_consistency(prompt_template, do_sample, use_cuda_kernel):
|
||||
cai_outputs = check_inference_engine(
|
||||
use_engine=True, do_sample=do_sample, use_cuda_kernel=use_cuda_kernel, prompt_template=prompt_template
|
||||
)
|
||||
transformer_outputs = check_inference_engine(
|
||||
use_engine=False, do_sample=do_sample, use_cuda_kernel=use_cuda_kernel, prompt_template=prompt_template
|
||||
)
|
||||
def run_engine(world_size, **kwargs):
|
||||
manager = Manager()
|
||||
result_list = manager.list([-1] * world_size) # Create a shared list
|
||||
|
||||
for s1, s2 in zip(cai_outputs, transformer_outputs):
|
||||
assert s1 == s2, f"\nColossalAI Output: {s1}\nTransformers Output: {s2}"
|
||||
|
||||
# clear singleton flash decoding tensors
|
||||
FDIntermTensors._instances = {}
|
||||
spawn(run_dist, world_size, func_to_run=check_inference_engine, ret=result_list, **kwargs)
|
||||
return result_list[0]
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
def run_dist(rank, world_size, port, func_to_run, ret=None, **kwargs):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost")
|
||||
check_output_consistency()
|
||||
|
||||
if ret:
|
||||
ret[rank] = func_to_run(**kwargs)
|
||||
else:
|
||||
func_to_run(**kwargs)
|
||||
|
||||
|
||||
# NOTE(caidi) If do_sample is set to True or use_cuda_kernel is set to False, the inference result will be different from that of the transformer.
|
||||
@parameterize("prompt_template", [None, "baichuan"])
|
||||
@parameterize("do_sample", [False])
|
||||
@parameterize("use_cuda_kernel", [True])
|
||||
def test_tp_engine(prompt_template, do_sample, use_cuda_kernel):
|
||||
kwargs1 = {
|
||||
"use_engine": True,
|
||||
"prompt_template": prompt_template,
|
||||
"do_sample": do_sample,
|
||||
"policy": NoPaddingBaichuanModelInferPolicy(),
|
||||
"use_cuda_kernel": use_cuda_kernel,
|
||||
}
|
||||
|
||||
kwargs2 = {
|
||||
"use_engine": False,
|
||||
"prompt_template": prompt_template,
|
||||
"do_sample": do_sample,
|
||||
"policy": None,
|
||||
"use_cuda_kernel": use_cuda_kernel,
|
||||
}
|
||||
|
||||
colossal_tp_1_output = run_engine(1, **kwargs1)
|
||||
colossal_tp_2_output = run_engine(2, **kwargs1)
|
||||
transformer_tp_1_output = run_engine(1, **kwargs2)
|
||||
|
||||
for s1, s2, s3 in zip(colossal_tp_1_output, colossal_tp_2_output, transformer_tp_1_output):
|
||||
assert s1 == s3, f"\nColossalAI TP=1 Output: {s1}\nTransformers Output: {s3}"
|
||||
assert s1 == s2, f"\nColossalAI TP=1 Output: {s1}\nColossalAI TP=2 Output: {s2}"
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
@ -104,7 +132,7 @@ def run_dist(rank, world_size, port):
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_inference_engine():
|
||||
spawn(run_dist, 1)
|
||||
test_tp_engine()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -193,6 +193,7 @@ def test_vllm_flash_decoding_attention(
|
||||
max_seq_len_across_batch = kv_seq_lengths.max().item()
|
||||
output = torch.empty((BATCH_SIZE, NUM_ATTN_HEADS, HEAD_SIZE), dtype=dtype, device=device)
|
||||
sm_scale = 1.0 / (HEAD_SIZE**0.5)
|
||||
kv_scale = 1.0
|
||||
|
||||
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_seq_lengths, BATCH_SIZE, max_seq_len_across_batch)
|
||||
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_seq_lengths, BATCH_SIZE, max_seq_len_across_batch)
|
||||
@ -250,6 +251,7 @@ def test_vllm_flash_decoding_attention(
|
||||
max_seq_len_across_batch,
|
||||
alibi_slopes,
|
||||
"auto",
|
||||
kv_scale,
|
||||
)
|
||||
numpy_allclose(out_ref, output, rtol=rtol, atol=atol)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user