[Infer] Optimize Blocked KVCache And Kernels Using It (#5325)

* revise shape of kvcache (context attn kernel)

* revise shape of kvcache (flash decoding kernel)

* revise shape of kvcache (kvcache copy) and attn func

* init of kvcache in kvcache manager

* revise llama modeling

* revise block size retrieval

* use torch for rms_norm benchmarking

* revise block size retrieval
This commit is contained in:
Yuanheng Zhao
2024-01-30 16:06:09 +08:00
committed by GitHub
parent e8f0642f28
commit 5f98a9d68a
14 changed files with 171 additions and 145 deletions

View File

@@ -15,8 +15,8 @@ def _copy_to_kvcache_seqlen1_kernel(
stride_kd,
stride_cacheb,
stride_cacheh,
stride_cached,
stride_cachebs,
stride_cached,
stride_bts,
stride_btb,
block_size,
@@ -29,15 +29,15 @@ def _copy_to_kvcache_seqlen1_kernel(
last_bt_block_idx = past_kv_seq_len // block_size
block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts
block_id = tl.load(block_table_ptr + last_bt_block_idx * stride_btb)
offsets_in_last_block = (past_kv_seq_len % block_size) * stride_cachebs
offsets_in_last_block = past_kv_seq_len % block_size
offsets_dmodel = tl.arange(0, HEAD_DIM)
offsets_kv = cur_seq_idx * stride_kt + cur_kv_head_idx * stride_kh + offsets_dmodel * stride_kd
kv = tl.load(KV + offsets_kv)
offsets_kvcache = (
block_id * stride_cacheb
+ cur_kv_head_idx * stride_cacheh
+ offsets_in_last_block * stride_cachebs
+ offsets_dmodel * stride_cached
+ offsets_in_last_block
)
tl.store(KVCache + offsets_kvcache, kv)
return
@@ -52,23 +52,18 @@ def copy_kv_to_blocked_cache(
"""
Copy keys or values to the blocked key/value cache during decoding stage.
Parameters:
- k (torch.Tensor): [bsz, 1, num_kv_heads, head_dim]/[bsz, num_kv_heads, head_dim] - Keys or values during decoding with seq len 1.
- k_cache (torch.Tensor): [num_blocks, num_kv_heads, head_dim, block_size] - Blocked key or value cache.
- kv_lengths (torch.Tensor): [bsz] - Past key/value sequence lengths plus current sequence length for each sequence.
- block_tables (torch.Tensor): [bsz, max_blocks_per_sequence] - Block tables for each sequence.
Args:
k (torch.Tensor): [bsz, 1, num_kv_heads, head_dim]/[bsz, num_kv_heads, head_dim] - Keys or values during decoding with seq len 1.
k_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_dim] - Blocked key or value cache.
kv_lengths (torch.Tensor): [bsz] - Past key/value sequence lengths plus current sequence length for each sequence.
block_tables (torch.Tensor): [bsz, max_blocks_per_sequence] - Block tables for each sequence.
"""
assert k.size(-1) == k_cache.size(-2), "Incompatible head dim"
assert k.size(-1) == k_cache.size(-1), "Incompatible head dim"
assert k.dtype == k_cache.dtype, "Expected consistent dtype for tensor and cache."
if k.dim() == 4:
assert k.size(1) == 1, "Unsupported kv seq len (supposed to be used for decoding stage)"
bsz, _, num_kv_heads, head_dim = k.shape
# [bsz, 1, num_kv_heads, head_dim] -> [bsz, num_kv_heads, head_dim]
k = k.squeeze(dim=1)
elif k.dim() == 3:
bsz, num_kv_heads, head_dim = k.shape
else:
raise ValueError(f"The key dim should be 3 or 4, but got {k.dim()}.")
k = k.squeeze(1) if k.dim() == 4 else k
assert k.dim() == 3, f"Incompatible k dim {k.dim()}"
bsz, num_kv_heads, head_dim = k.shape
assert kv_lengths.shape[0] == block_tables.shape[0] == bsz, (
f"Got incompatible batch size (number of seqs):\n"
@@ -77,7 +72,7 @@ def copy_kv_to_blocked_cache(
)
# Modify if the shape of kv cahce is changed.
block_size = k_cache.size(-1)
block_size = k_cache.size(-2)
num_warps = 8 if head_dim > 128 else 4