[Infer] Optimize Blocked KVCache And Kernels Using It (#5325)

* revise shape of kvcache (context attn kernel)

* revise shape of kvcache (flash decoding kernel)

* revise shape of kvcache (kvcache copy) and attn func

* init of kvcache in kvcache manager

* revise llama modeling

* revise block size retrieval

* use torch for rms_norm benchmarking

* revise block size retrieval
This commit is contained in:
Yuanheng Zhao
2024-01-30 16:06:09 +08:00
committed by GitHub
parent e8f0642f28
commit 5f98a9d68a
14 changed files with 171 additions and 145 deletions

View File

@@ -93,7 +93,7 @@ def check_cache_manager(test_config):
assert len(cache_manager._cache_blocks) == num_blocks
key_caches = cache_manager._kv_caches[0] # key caches for all the blocks in all the layers
assert len(key_caches) == num_layers
expected_kv_shape = (num_blocks, num_attention_heads, head_size, block_size)
expected_kv_shape = (num_blocks, num_attention_heads, block_size, head_size)
assert key_caches[0].shape == expected_kv_shape
k_cache_block0, v_cache_block0 = cache_manager.get_physical_cache(0, 0)
expected_kv_block_shape = expected_kv_shape[1:]

View File

@@ -1,20 +1,17 @@
import pytest
import torch
from transformers.cache_utils import DynamicCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
import colossalai
from colossalai.inference.modeling.layers.attention import PagedAttention, convert_kvcache, copy_to_cache
from colossalai.testing import rerun_if_address_is_in_use, spawn
def test_copy_to_cache():
key = torch.ones((2, 11, 3, 3))
key[0, 9, :, :] = 0
key[1, -2:, :, :] = 0
cache = torch.zeros(8, 3, 3, 8)
cache = torch.zeros(8, 3, 8, 3)
block_tables = torch.tensor([[0, 1], [2, 3]])
lengths = torch.tensor([9, 8])
cache = copy_to_cache(key, cache=cache, lengths=lengths, block_tables=block_tables, type="prefill")
@@ -28,7 +25,7 @@ def test_copy_to_cache():
def test_convert_kvcache():
cache = torch.ones(8, 3, 3, 8)
cache = torch.ones(8, 3, 8, 3)
key = torch.ones(2, 1, 3, 3) + 1
lengths = torch.tensor([10, 9])
block_tables = torch.tensor([[0, 1], [2, 3]])
@@ -43,8 +40,8 @@ def test_context_attention():
"""
attn = PagedAttention()
q = k = v = torch.randn(8, 4, 4)
k_cache = torch.empty(8, 4, 4, 8)
v_cache = torch.empty(8, 4, 4, 8)
k_cache = torch.empty(8, 4, 8, 4)
v_cache = torch.empty(8, 4, 8, 4)
context_lengths = torch.tensor(
[
8,
@@ -136,23 +133,8 @@ def test_decoding_attention():
assert torch.allclose(pad_attn_output, attn_output, atol=1e-3, rtol=1e-2)
def check_attention_layer():
if __name__ == "__main__":
test_copy_to_cache()
test_convert_kvcache()
test_context_attention()
test_decoding_attention()
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost")
check_attention_layer()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_attention_layer():
spawn(run_dist, 1)
if __name__ == "__main__":
test_attention_layer()

View File

@@ -106,6 +106,40 @@ def mock_alloc_block_table_and_kvcache(
return block_tables
def mock_alloc_block_table_and_kvcache_v2(
k: torch.Tensor,
v: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
context_lengths: torch.Tensor,
num_seqs: int,
max_num_blocks_per_seq: int,
block_size: int,
) -> torch.Tensor:
"""Allocate block tables based on provided context lengths; and copy KV to blocked KV Cache."""
block_id = 0
block_tables = torch.full(size=(num_seqs, max_num_blocks_per_seq), fill_value=-1, dtype=torch.int32)
num_tokens_processed = 0
for i, seq_len in enumerate(context_lengths.tolist()):
right_bound = (seq_len + block_size - 1) // block_size # open bound
block_tables[i, :right_bound] = torch.arange(block_id, block_id + right_bound, dtype=torch.int32)
# Manually fill kv caches by copying from k and v
for i in range(right_bound):
if i == right_bound - 1:
allocated_locs = seq_len % block_size or block_size
else:
allocated_locs = block_size
k_block = k[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 0, 2)
v_block = v[num_tokens_processed : num_tokens_processed + allocated_locs, :, :].permute(1, 0, 2)
k_cache[block_id, :, :allocated_locs, :] = k_block
v_cache[block_id, :, :allocated_locs, :] = v_block
num_tokens_processed += allocated_locs
block_id += 1
return block_tables
def mock_alloc_single_token(block_tables: torch.Tensor, context_lengths: torch.Tensor, block_size: int) -> None:
# Allocate 1 token on the block table for each seqs in block tables.
# It won't change provided context_lengths.
@@ -146,6 +180,22 @@ def generate_caches_and_block_tables(
return k_cache, v_cache, block_tables
def generate_caches_and_block_tables_v2(
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype=torch.float16, device="cuda"
) -> Tuple[torch.Tensor, ...]:
# Mock generation of k/v blocked caches and block tables from providied kv unpad and seq lengths
# k_unpad/v_unpad [num_total_tokens, num_kv_heads, head_dim]
_, num_kv_heads, head_dim = k_unpad.shape
cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, block_size, head_dim)
k_cache = torch.zeros(size=cache_shape, dtype=dtype, device=device)
v_cache = torch.zeros(size=cache_shape, dtype=dtype, device=device)
# Mock allocation on block tables as well as blocked kv caches
block_tables = mock_alloc_block_table_and_kvcache_v2(
k_unpad, v_unpad, k_cache, v_cache, kv_lengths, bsz, max_num_blocks_per_seq, block_size
)
return k_cache, v_cache, block_tables
def convert_kv_unpad_to_padded(
k_unpad: torch.Tensor, kv_seq_lengths: torch.Tensor, bsz: int, max_seq_len: int
) -> torch.Tensor:

View File

@@ -6,7 +6,7 @@ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from colossalai.inference.modeling.layers.attention import PagedAttention
from colossalai.kernel.triton import context_attention_unpadded
from colossalai.utils import get_current_device
from tests.test_infer_ops.triton.kernel_utils import generate_caches_and_block_tables, torch_attn_ref
from tests.test_infer_ops.triton.kernel_utils import generate_caches_and_block_tables_v2, torch_attn_ref
try:
import triton # noqa
@@ -93,7 +93,7 @@ def test_context_attention(
q_unpad, k_unpad, v_unpad = torch.split(qkv_unpad, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2)
q_unpad = q_unpad.contiguous()
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables(
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)
@@ -148,7 +148,6 @@ def bench_kernel(
num_kv_heads = num_attn_heads // kv_group_num
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
block_size * max_num_blocks_per_seq
dtype = torch.float16
device = get_current_device()
@@ -162,7 +161,7 @@ def bench_kernel(
qkv_unpad = torch.empty(size=qkv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
q_unpad, k_unpad, v_unpad = torch.split(qkv_unpad, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2)
q_unpad = q_unpad.contiguous()
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables(
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)

View File

@@ -6,7 +6,7 @@ from colossalai.kernel.triton import flash_decoding_attention
from colossalai.utils import get_current_device
from tests.test_infer_ops.triton.kernel_utils import (
convert_kv_unpad_to_padded,
generate_caches_and_block_tables,
generate_caches_and_block_tables_v2,
prepare_padding_mask,
torch_attn_ref,
)
@@ -38,6 +38,9 @@ def prepare_data(
):
# Use the provided maximum sequence length for each sequence when testing with teh same context length,
# otherwise generate random context lengths.
# returns
# q [bsz, num_attn_heads, q_len, head_dim]
# k_unpad/v_unpad [num_tokens, num_kv_heads, head_dim]
kv_lengths = (
torch.tensor([max_kv_seq_len for _ in range(bsz)], dtype=torch.int32, device=device)
if same_context_len
@@ -83,7 +86,7 @@ def test_flash_decoding(
q, k_unpad, v_unpad, kv_seq_lengths = prepare_data(
bsz, num_attn_heads, num_kv_heads, HEAD_DIM, same_context_len, Q_LEN, max_seq_len, dtype, device
)
k_cache, v_cache, block_tables = generate_caches_and_block_tables(
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, kv_seq_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)
@@ -180,7 +183,7 @@ def bench_kernel(
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
if provider == "triton":
k_cache, v_cache, block_tables = generate_caches_and_block_tables(
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)

View File

@@ -5,7 +5,7 @@ from packaging import version
from colossalai.inference.modeling.layers.attention import copy_to_cache
from colossalai.kernel.triton import copy_kv_to_blocked_cache
from colossalai.utils import get_current_device
from tests.test_infer_ops.triton.kernel_utils import mock_alloc_block_table_and_kvcache, mock_alloc_single_token
from tests.test_infer_ops.triton.kernel_utils import generate_caches_and_block_tables_v2, mock_alloc_single_token
try:
import triton # noqa
@@ -17,6 +17,8 @@ except ImportError:
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
HEAD_DIM = 128
def prepare_data(
bsz,
@@ -29,31 +31,27 @@ def prepare_data(
device,
dtype=torch.float16,
):
if same_context_len:
# past_kv_seq_lengths in this test records the previous kv seq len
# (not incorporating the current input whose seq len is 1)
past_kv_seq_lengths = torch.tensor([max_seq_len - 1 for _ in range(bsz)], dtype=torch.int32, device=device)
else:
past_kv_seq_lengths = torch.randint(low=1, high=max_seq_len - 1, size=(bsz,), dtype=torch.int32, device=device)
# past_kv_seq_lengths in this test records the previous kv seq len
# (not incorporating the current input whose seq len is 1)
past_kv_seq_lengths = (
torch.tensor([max_seq_len - 1 for _ in range(bsz)], dtype=torch.int32, device=device)
if same_context_len
else torch.randint(low=1, high=max_seq_len - 1, size=(bsz,), dtype=torch.int32, device=device)
)
num_tokens = torch.sum(past_kv_seq_lengths).item()
kv_size = (num_tokens, 2 * num_kv_heads, head_dim)
kv = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
k, v = torch.split(kv, [num_kv_heads, num_kv_heads], dim=-2)
kv_unpad = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
k_unpad, v_unpad = torch.split(kv_unpad, [num_kv_heads, num_kv_heads], dim=-2)
cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, head_dim, block_size)
k_cache = torch.zeros(size=cache_shape, dtype=dtype, device=device)
v_cache = torch.zeros(size=cache_shape, dtype=dtype, device=device)
# Mock allocation on block tables as well as blocked kv caches
block_tables = mock_alloc_block_table_and_kvcache(
k, v, k_cache, v_cache, past_kv_seq_lengths, bsz, max_num_blocks_per_seq, block_size
k_cache, _, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, past_kv_seq_lengths, bsz, max_num_blocks_per_seq, block_size, dtype=dtype, device=device
)
block_tables = block_tables.to(device=device)
new_k = torch.randn((bsz, 1, num_kv_heads, head_dim), dtype=dtype, device=device)
# mock allocating blocks for the new k/v and update block tables
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
# kv seq len = past kv seq len + seq len (1 during decoding stage)
kv_seq_lengths = past_kv_seq_lengths + 1
@@ -78,7 +76,6 @@ def test_copy_kv_to_caches(
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
head_dim = 128
max_seq_len = block_size * max_num_blocks_per_seq
dtype = torch.float16
device = get_current_device()
@@ -86,7 +83,7 @@ def test_copy_kv_to_caches(
new_k, k_cache, kv_seq_lengths, block_tables = prepare_data(
bsz,
num_kv_heads,
head_dim,
HEAD_DIM,
block_size,
max_num_blocks_per_seq,
same_context_len,
@@ -94,20 +91,28 @@ def test_copy_kv_to_caches(
device=device,
dtype=dtype,
)
# k_cache_torch = k_cache.clone().detach()
# copy_to_cache(new_k, k_cache_torch, lengths=kv_seq_lengths, block_tables=block_tables, type="decoding")
copy_kv_to_blocked_cache(new_k, k_cache, kv_seq_lengths, block_tables)
for seq_i in range(bsz):
ki = new_k[seq_i]
ki = ki.squeeze()
past_kv_seq_len = kv_seq_lengths[seq_i] - 1
target_block_id = block_tables[seq_i, past_kv_seq_len // block_size]
offsets_in_block = past_kv_seq_len % block_size
target = k_cache[target_block_id, :, :, offsets_in_block]
orig = new_k[seq_i].squeeze(dim=0)
assert torch.equal(orig, target)
past_kv_seq_len = kv_seq_lengths - 1
target_block_ids = block_tables[range(0, block_tables.size(0)), past_kv_seq_len // block_size]
offsets_in_block = past_kv_seq_len % block_size
target = k_cache[target_block_ids, :, offsets_in_block, :]
source = new_k.squeeze()
assert target.shape == source.shape
assert torch.equal(target, source)
# target_torch = k_cache_copy[target_block_ids, :, offsets_in_block, :]
# assert target_torch.shape == source.shape
# assert torch.equal(target_torch, source)
BATCH = 16
BLOCK_SIZE = 32
SAME_LEN = True
WARM_UPS = 10
REPS = 100
configs = [
triton.testing.Benchmark(
x_names=["KV_SEQ_LEN"],
@@ -133,10 +138,6 @@ def benchmark_kvcache_copy(
num_kv_heads: int,
same_context_len: bool,
):
warmup = 10
rep = 100
head_dim = 128
dtype = torch.float16
device = get_current_device()
@@ -145,7 +146,7 @@ def benchmark_kvcache_copy(
new_k, k_cache, context_lengths, block_tables = prepare_data(
bsz,
num_kv_heads,
head_dim,
HEAD_DIM,
block_size,
max_seq_len // block_size,
same_context_len,
@@ -154,15 +155,14 @@ def benchmark_kvcache_copy(
dtype=dtype,
)
quantiles = [0.5, 0.2, 0.8]
if provider == "torch_copy_func":
fn = lambda: copy_to_cache(new_k, k_cache, lengths=context_lengths, block_tables=block_tables, type="decoding")
elif provider == "triton_copy_func":
if provider == "triton_copy_func":
fn = lambda: copy_kv_to_blocked_cache(new_k, k_cache, context_lengths, block_tables)
else:
raise ValueError("Undefined provider.")
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
return ms, min_ms, max_ms
if __name__ == "__main__":

View File

@@ -3,7 +3,6 @@ import torch
import triton
from packaging import version
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from vllm.model_executor.layers.layernorm import RMSNorm
from colossalai.kernel.triton import rms_layernorm
from colossalai.testing.utils import parameterize
@@ -36,7 +35,8 @@ def test_layer_norm(M, N):
y_triton = rms_layernorm(x, weight, eps=eps)
y_llama = rms_norm.forward(x).to(dtype)
assert torch.allclose(y_triton, y_llama, atol=1e-5, rtol=1e-5)
assert y_triton.shape == y_llama.shape
assert torch.allclose(y_triton, y_llama, atol=1e-5, rtol=1e-3)
# Triton benchmark plot attributions
@@ -45,8 +45,8 @@ configs = [
x_names=["SEQUENCE_TOTAL"],
x_vals=[i for i in range(128, 1025, 128)],
line_arg="provider",
line_vals=["vllm_rms_layernorm", "triton_rms_layernorm"],
line_names=["vllm_rms_layernorm", "triton_rms_layernorm"],
line_vals=["torch_rms_layernorm", "triton_rms_layernorm"],
line_names=["torch_rms_layernorm", "triton_rms_layernorm"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"RMSNorm benchmarking results",
@@ -69,10 +69,10 @@ def benchmark_rms_layernorm(
x_shape = (SEQUENCE_TOTAL, HIDDEN_SIZE)
w_shape = (x_shape[-1],)
weight = torch.ones(w_shape, dtype=dtype, device="cuda")
vllm_norm = RMSNorm(hidden_size=HIDDEN_SIZE).to(dtype=dtype, device="cuda")
torch_norm = LlamaRMSNorm(hidden_size=HIDDEN_SIZE).to(dtype=dtype, device="cuda")
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda")
if provider == "vllm_rms_layernorm":
fn = lambda: vllm_norm(x)
if provider == "torch_rms_layernorm":
fn = lambda: torch_norm(x)
elif provider == "triton_rms_layernorm":
fn = lambda: rms_layernorm(x, weight, eps=eps)
else: