[feat] Sync shard model (#6289)

* [feat] support hybrid parallel model sync

* update consumer and producer

* update files

* update producer

* remove print

* update

---------

Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li35271158@gmail.com>
This commit is contained in:
Tong Li
2025-04-30 14:47:01 +08:00
committed by GitHub
parent 14f237ce7e
commit 5fd4bcb9d8
4 changed files with 66 additions and 20 deletions

View File

@@ -59,10 +59,6 @@ class BaseConsumer:
self.lr_scheduler = None
def setup(self) -> None:
for i in range(self.num_producers):
cc.init_collective_group(self.world_size + 1, self.rank + 1, group_name=f"sync_data_{i}")
if self.rank == 0:
cc.init_collective_group(self.num_producers + 1, self.num_producers, group_name="sync_model")
launch(self.rank, self.world_size, self.master_addr, self.master_port, local_rank=0)
plugin_config = dict(tp_size=1, pp_size=1, precision="bf16", zero_stage=2)
@@ -77,8 +73,24 @@ class BaseConsumer:
self.booster = Booster(plugin=self.plugin)
self.dp_rank = dist.get_rank(self.plugin.dp_group)
self.tp_rank = dist.get_rank(self.plugin.tp_group)
self.pp_rank = dist.get_rank(self.plugin.pp_group)
self.dp_size = dist.get_world_size(self.plugin.dp_group)
self.tp_size = dist.get_world_size(self.plugin.tp_group)
self.pp_size = dist.get_world_size(self.plugin.pp_group)
# Init Hybrid ray process group
for i in range(self.num_producers):
cc.init_collective_group(self.world_size + 1, self.rank + 1, group_name=f"sync_data_{i}")
if self.pp_size > 1:
# use hybrid tp + pp
if self.tp_rank == 0 and self.dp_rank == 0:
cc.init_collective_group(
self.num_producers + 1, self.num_producers, group_name=f"sync_model_{self.pp_rank}"
)
else:
if self.rank == 0:
cc.init_collective_group(self.num_producers + 1, self.num_producers, group_name="sync_model")
self.buffer = []
@@ -140,13 +152,27 @@ class BaseConsumer:
print(f"Saved model checkpoint at step {step + 1} in folder {save_path}")
if episode != self.num_episodes - 1 or step != self.num_update_per_episode - 1:
print(f"[T{dist.get_rank()}] Sync model episode {episode} step {step}")
if self.pp_size > 1:
print(
f"[T{dist.get_rank()}] Sync model PP stage {self.pp_rank} episode {episode} step {step}"
)
else:
print(f"[T{dist.get_rank()}] Sync model episode {episode} step {step}")
torch.cuda.empty_cache()
state_dict = self.state_dict()
if self.rank == 0:
ray_broadcast_tensor_dict(
state_dict, src=self.num_producers, device=self.device, group_name="sync_model"
)
if self.pp_size > 1:
if self.tp_rank == 0 and self.dp_rank == 0:
ray_broadcast_tensor_dict(
state_dict,
src=self.num_producers,
device=self.device,
group_name=f"sync_model_{self.pp_rank}",
)
else:
if self.rank == 0:
ray_broadcast_tensor_dict(
state_dict, src=self.num_producers, device=self.device, group_name="sync_model"
)
del state_dict
torch.cuda.empty_cache()