mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
[Inference]Add CUDA KVCache Kernel (#5406)
* add cuda KVCache kernel * annotation benchmark_kvcache_copy * add use cuda * fix import path * move benchmark scripts to example/ * rm benchmark codes in test_kv_cache_memcpy.py * rm redundancy codes * rm redundancy codes * pr was modified according to the review
This commit is contained in:
@@ -4,6 +4,7 @@ from .flash_attention import (
|
||||
FlashAttentionNpuExtension,
|
||||
FlashAttentionXformersCudaExtension,
|
||||
)
|
||||
from .inference import InferenceOpsCudaExtension
|
||||
from .layernorm import LayerNormCudaExtension
|
||||
from .moe import MoeCudaExtension
|
||||
from .optimizer import FusedOptimizerCudaExtension
|
||||
@@ -15,6 +16,7 @@ ALL_EXTENSIONS = [
|
||||
LayerNormCudaExtension,
|
||||
MoeCudaExtension,
|
||||
FusedOptimizerCudaExtension,
|
||||
InferenceOpsCudaExtension,
|
||||
ScaledMaskedSoftmaxCudaExtension,
|
||||
ScaledUpperTriangleMaskedSoftmaxCudaExtension,
|
||||
FlashAttentionDaoCudaExtension,
|
||||
@@ -28,6 +30,7 @@ __all__ = [
|
||||
"LayerNormCudaExtension",
|
||||
"MoeCudaExtension",
|
||||
"FusedOptimizerCudaExtension",
|
||||
"InferenceOpsCudaExtension",
|
||||
"ScaledMaskedSoftmaxCudaExtension",
|
||||
"ScaledUpperTriangleMaskedSoftmaxCudaExtension",
|
||||
"FlashAttentionDaoCudaExtension",
|
||||
|
15
extensions/csrc/cuda/colossal_inference_C_frontend.cpp
Normal file
15
extensions/csrc/cuda/colossal_inference_C_frontend.cpp
Normal file
@@ -0,0 +1,15 @@
|
||||
#include <torch/extension.h>
|
||||
|
||||
void decode_kv_cache_memcpy(
|
||||
torch::Tensor& key, // [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& value, // [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& key_cache, // [num_blocks, num_heads, block_size, head_size]
|
||||
torch::Tensor&
|
||||
value_cache, // [num_blocks, num_heads, block_size, head_size]
|
||||
torch::Tensor& sequence_lengths, // [batch_size]
|
||||
torch::Tensor& block_tables); // [batch_size, max_seq_len]
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("decode_kv_cache_memcpy", &decode_kv_cache_memcpy,
|
||||
"Copy the GPU memory of kvcache during the decode stage.");
|
||||
}
|
90
extensions/csrc/cuda/decode_kv_cache_memcpy_kernel.cu
Normal file
90
extensions/csrc/cuda/decode_kv_cache_memcpy_kernel.cu
Normal file
@@ -0,0 +1,90 @@
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <torch/extension.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "type_shim.h"
|
||||
|
||||
template<typename scalar_t>
|
||||
__global__ void decode_kv_cache_memcpy_kernel(
|
||||
const scalar_t* __restrict__ key,
|
||||
const scalar_t* __restrict__ value,
|
||||
scalar_t* __restrict__ key_cache,
|
||||
scalar_t* __restrict__ value_cache,
|
||||
const int* __restrict__ sequence_lengths,
|
||||
const int* __restrict__ block_tables,
|
||||
const int num_heads,
|
||||
const int head_size,
|
||||
const int block_size,
|
||||
const int key_stride,
|
||||
const int value_stride,
|
||||
const int block_table_stride
|
||||
)
|
||||
{
|
||||
const int seq_id = blockIdx.x;
|
||||
const int seq_len = sequence_lengths[seq_id] - 1;
|
||||
const int seq_id_in_block_table = seq_len / block_size;
|
||||
const int block_offset = seq_len % block_size;
|
||||
const int block_id = block_tables[seq_id * block_table_stride + seq_id_in_block_table];
|
||||
const int hidden_size = num_heads * head_size;
|
||||
|
||||
if ( block_id < 0 ) {
|
||||
return ;
|
||||
}
|
||||
|
||||
for (int i = threadIdx.x; i < hidden_size; i += blockDim.x) {
|
||||
const int head_id = i / head_size;
|
||||
const int head_offset = i % head_size;
|
||||
const int key_src_id = seq_id * key_stride + i;
|
||||
const int value_src_id = seq_id * value_stride + i;
|
||||
const int target_src_id = block_id * hidden_size * block_size
|
||||
+ head_id * block_size * head_size
|
||||
+ block_offset * head_size + head_offset;
|
||||
|
||||
key_cache[target_src_id] = key[key_src_id];
|
||||
value_cache[target_src_id] = value[value_src_id];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void decode_kv_cache_memcpy(
|
||||
torch::Tensor& key, // [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& value, // [num_tokens, num_heads, head_size]
|
||||
torch::Tensor& key_cache, // [num_blocks, num_heads, block_size, head_size]
|
||||
torch::Tensor& value_cache, // [num_blocks, num_heads, block_size, head_size]
|
||||
torch::Tensor& sequence_lengths, // [batch_size]
|
||||
torch::Tensor& block_tables) // [batch_size, max_seq_len]
|
||||
{
|
||||
int num_tokens = key.size(0);
|
||||
int num_heads = key.size(1);
|
||||
int head_size = key.size(2);
|
||||
int block_size = key_cache.size(2);
|
||||
|
||||
int key_stride = key.stride(0);
|
||||
int value_stride = value.stride(0);
|
||||
int block_table_stride = block_tables.stride(0);
|
||||
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(num_heads * head_size, 512));
|
||||
DISPATCH_FLOAT_HALF_AND_BFLOAT(
|
||||
key.scalar_type(),
|
||||
"decode_kv_cache_memcpy",
|
||||
decode_kv_cache_memcpy_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
key.data_ptr<scalar_t>(),
|
||||
value.data_ptr<scalar_t>(),
|
||||
key_cache.data_ptr<scalar_t>(),
|
||||
value_cache.data_ptr<scalar_t>(),
|
||||
sequence_lengths.data_ptr<int>(),
|
||||
block_tables.data_ptr<int>(),
|
||||
num_heads,
|
||||
head_size,
|
||||
block_size,
|
||||
key_stride,
|
||||
value_stride,
|
||||
block_table_stride
|
||||
);)
|
||||
|
||||
AT_CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
}
|
@@ -24,6 +24,27 @@
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
||||
}
|
||||
|
||||
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
|
||||
switch (TYPE) { \
|
||||
case at::ScalarType::Float: { \
|
||||
using scalar_t = float; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::Half: { \
|
||||
using scalar_t = at::Half; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::BFloat16: { \
|
||||
using scalar_t = at::BFloat16; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
default: \
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
||||
}
|
||||
|
||||
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
|
||||
switch (TYPEIN) { \
|
||||
case at::ScalarType::Float: { \
|
||||
|
@@ -1,7 +1,10 @@
|
||||
import os
|
||||
import time
|
||||
from abc import abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
from .base_extension import _Extension
|
||||
from .cpp_extension import _CppExtension
|
||||
from .utils import check_pytorch_version, check_system_pytorch_cuda_match, set_cuda_arch_list
|
||||
|
||||
|
3
extensions/inference/__init__.py
Normal file
3
extensions/inference/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from .inference_ops_cuda import InferenceOpsCudaExtension
|
||||
|
||||
__all__ = ["InferenceOpsCudaExtension"]
|
30
extensions/inference/inference_ops_cuda.py
Normal file
30
extensions/inference/inference_ops_cuda.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from ..cuda_extension import _CudaExtension
|
||||
from ..utils import get_cuda_cc_flag
|
||||
|
||||
|
||||
class InferenceOpsCudaExtension(_CudaExtension):
|
||||
def __init__(self):
|
||||
super().__init__(name="inference_ops_cuda")
|
||||
|
||||
def sources_files(self):
|
||||
ret = [
|
||||
self.csrc_abs_path(fname)
|
||||
for fname in [
|
||||
"cuda/colossal_inference_C_frontend.cpp",
|
||||
"cuda/decode_kv_cache_memcpy_kernel.cu",
|
||||
]
|
||||
]
|
||||
return ret
|
||||
|
||||
def include_dirs(self):
|
||||
ret = [self.get_cuda_home_include()]
|
||||
return ret
|
||||
|
||||
def cxx_flags(self):
|
||||
version_dependent_macros = ["-DVERSION_GE_1_1", "-DVERSION_GE_1_3", "-DVERSION_GE_1_5"]
|
||||
return ["-O3"] + version_dependent_macros
|
||||
|
||||
def nvcc_flags(self):
|
||||
extra_cuda_flags = ["-lineinfo"]
|
||||
extra_cuda_flags.extend(get_cuda_cc_flag())
|
||||
return ["-O3", "--use_fast_math"] + extra_cuda_flags
|
Reference in New Issue
Block a user