mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-19 00:16:51 +00:00
[autoparallel] add binary elementwise metainfo for auto parallel (#2058)
* [fx] metainfo class for auto parallel * [fx] add unit test for linear metainfo * [fx] fix bwd param for linear * [fx] modify unit test * [fx] modify unit test * [fx] modify import * [fx] modify import * [fx] modify import * [fx] move meta profiler to auto parallel * [fx] add conv metainfo class * [fx] restore profiler * [fx] restore meta profiler * [autoparallel] modify unit test * [fx] modify unit test * [autoparallel] add batchnorm metainfo class * [autoparallel] fix batchnorm unit test function declaration * [fx] restore profiler * [fx] add relu metainfo class * [fx] restore profiler * [autoparallel] modify metainfo input * [autoparallel] add pooling metainfo * [autoparallel] add F.linear metainfo generator * [autoparallel] add binary elementwise metainfo * [fx] recover profiler * [autoparallel] fix forward memory calculation * [autoparallel] modify constants.py * [autoparallel] remove redundant print
This commit is contained in:
@@ -1,5 +1,12 @@
|
||||
import operator
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ..tensor_shard.constants import *
|
||||
|
||||
# list of inplace operations
|
||||
INPLACE_MODULE = [nn.ReLU]
|
||||
|
||||
# list of operations that do not save forward activations
|
||||
NO_SAVE_ACTIVATION = [torch.add, torch.sub, operator.add, operator.sub]
|
||||
|
@@ -1,4 +1,5 @@
|
||||
from .activation import *
|
||||
from .binary_elementwise_ops import *
|
||||
from .conv import *
|
||||
from .linear import *
|
||||
from .norm import *
|
||||
|
@@ -0,0 +1,65 @@
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
|
||||
from colossalai.fx.profiler.memory_utils import activation_size
|
||||
from colossalai.fx.profiler.opcount import flop_mapping
|
||||
|
||||
from ..constants import BCAST_FUNC_OP
|
||||
from ..registry import meta_register
|
||||
|
||||
__all__ = ['binary_elementwise_meta_info']
|
||||
|
||||
|
||||
@meta_register.register(BCAST_FUNC_OP)
|
||||
def binary_elementwise_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""Meta information generator for binary elementwise operations
|
||||
NOTE: Some of the binary elementwise operations will discard the input activation after computation, as they
|
||||
don't need those tensors for back propagation, for example, if there are two tensors being sent for `torch.add`,
|
||||
they will be discarded right after add operation is done. We create a simple API in `MetaInfo` class to identify
|
||||
this behavior, it is critical for better memory estimation.
|
||||
|
||||
Returns:
|
||||
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
||||
"""
|
||||
|
||||
input_op_data, other_op_data = [arg for arg in args if arg.type != OperationDataType.OUTPUT]
|
||||
output_op_data = next(filter(lambda arg: arg.type == OperationDataType.OUTPUT, args))
|
||||
|
||||
# construct forward args for flop mapping
|
||||
fwd_in_args = [input_op_data.data, other_op_data.data]
|
||||
fwd_out_args = [output_op_data.data]
|
||||
|
||||
# calculate cost
|
||||
|
||||
# calculate compute cost
|
||||
# NOTE: we set bwd_compute_cost two times of fwd_compute_cost in this case
|
||||
fwd_compute_cost = flop_mapping[torch.ops.aten._adaptive_avg_pool2d.default](fwd_in_args, fwd_out_args)
|
||||
bwd_compute_cost = fwd_compute_cost * 2
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
||||
|
||||
# calculate memory cost
|
||||
param_mem_cost = activation_size(
|
||||
[arg.data for arg in [input_op_data, other_op_data] if arg.type == OperationDataType.PARAM])
|
||||
fwd_mem_cost = MemoryCost(
|
||||
activation=activation_size([input_op_data.data, output_op_data.data]),
|
||||
parameter=param_mem_cost,
|
||||
)
|
||||
bwd_mem_cost = MemoryCost(
|
||||
activation=activation_size(fwd_in_args),
|
||||
parameter=param_mem_cost,
|
||||
)
|
||||
|
||||
# total cost
|
||||
total_mem_cost = MemoryCost(
|
||||
activation=fwd_mem_cost.activation + bwd_mem_cost.activation,
|
||||
parameter=fwd_mem_cost.parameter + bwd_mem_cost.parameter,
|
||||
)
|
||||
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
|
||||
# store fwd_in
|
||||
fwd_in = fwd_in_args
|
||||
|
||||
return compute_cost, memory_cost, fwd_in
|
@@ -13,7 +13,7 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
)
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
from .constants import INPLACE_MODULE
|
||||
from .constants import INPLACE_MODULE, NO_SAVE_ACTIVATION
|
||||
from .registry import meta_register
|
||||
|
||||
__all__ = ['MetaInfo']
|
||||
@@ -35,6 +35,9 @@ class MetaInfo:
|
||||
# list of input tensors
|
||||
self.fwd_in: list[OperationData]
|
||||
|
||||
# bool type to indicate whether the function will save forward activation
|
||||
self.save_fwd_in: bool
|
||||
|
||||
# sharding strategy
|
||||
self._strategy = strategy
|
||||
|
||||
@@ -95,10 +98,16 @@ class MetaInfo:
|
||||
try:
|
||||
# module
|
||||
meta_func = meta_register.get(self._target.__class__)
|
||||
|
||||
# check whether the target in the module list that we don't need to save activation
|
||||
self.save_fwd_in = self._target.__class__ not in NO_SAVE_ACTIVATION
|
||||
except:
|
||||
# function
|
||||
meta_func = meta_register.get(self._target)
|
||||
|
||||
# check whether the target in the module list that we don't need to save activation
|
||||
self.save_fwd_in = self._target not in NO_SAVE_ACTIVATION
|
||||
|
||||
# construct args for meta_func
|
||||
args = [self.compute_sharded_tensor(k, v) for k, v in self._strategy.sharding_specs.items()]
|
||||
|
||||
|
Reference in New Issue
Block a user