[autoparallel] add binary elementwise metainfo for auto parallel (#2058)

* [fx] metainfo class for auto parallel

* [fx] add unit test for linear metainfo

* [fx] fix bwd param for linear

* [fx] modify unit test

* [fx] modify unit test

* [fx] modify import

* [fx] modify import

* [fx] modify import

* [fx] move meta profiler to auto parallel

* [fx] add conv metainfo class

* [fx] restore profiler

* [fx] restore meta profiler

* [autoparallel] modify unit test

* [fx] modify unit test

* [autoparallel] add batchnorm metainfo class

* [autoparallel] fix batchnorm unit test function declaration

* [fx] restore profiler

* [fx] add relu metainfo class

* [fx] restore profiler

* [autoparallel] modify metainfo input

* [autoparallel] add pooling metainfo

* [autoparallel] add F.linear metainfo generator

* [autoparallel] add binary elementwise metainfo

* [fx] recover profiler

* [autoparallel] fix forward memory calculation

* [autoparallel] modify constants.py

* [autoparallel] remove redundant print
This commit is contained in:
Boyuan Yao
2022-12-04 15:18:51 +08:00
committed by GitHub
parent 4b40fbd743
commit 616da17fab
9 changed files with 164 additions and 11 deletions

View File

@@ -35,9 +35,9 @@ def _ReLU_module_mem_test(rank, world_size, port):
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# index of conv node in computation graph
# index of target node in computation graph
node_index = 1
# total number of conv strategies
# total number of target node strategies
strategy_number = 1
mem_test_for_node_strategy(rank=rank,
model=model,

View File

@@ -34,9 +34,9 @@ def _batchnorm_module_mem_test(rank, world_size, port):
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# index of conv node in computation graph
# index of target node in computation graph
node_index = 1
# total number of conv strategies
# total number of target node strategies
strategy_number = 4
mem_test_for_node_strategy(rank=rank,
model=model,

View File

@@ -0,0 +1,71 @@
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy
class BinaryElementwiseOpModule(nn.Module):
def __init__(self, token=torch.add, shape=64) -> None:
super().__init__()
self.token = token
self.param = nn.Parameter(torch.rand(shape))
def forward(self, input):
return input + self.param
def _binary_elementwise_mem_test(rank, world_size, port):
"""This function is for binary elementwise ops memory test
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
Args:
rank: device rank
bias: indicate whether conv module need bias
world_size: number of devices
port: port for initializing process group
"""
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = BinaryElementwiseOpModule(token=torch.add, shape=1024).cuda()
input = torch.rand(32, 1024).cuda()
input.requires_grad = True
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# index of target node in computation graph
node_index = 2
# total number of target node strategies
strategy_number = 9
mem_test_for_node_strategy(rank=rank,
model=model,
device_mesh=device_mesh,
node_index=node_index,
strategy_number=strategy_number,
input_args=[input],
meta_arg_names=['input'])
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_binary_elementwise_meta_concrete_info_match():
world_size = 4
run_func_module = partial(_binary_elementwise_mem_test, world_size=world_size, port=free_port())
mp.spawn(run_func_module, nprocs=world_size)
if __name__ == '__main__':
test_binary_elementwise_meta_concrete_info_match()

View File

@@ -35,9 +35,9 @@ def _conv_module_mem_test(rank, bias, world_size, port):
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# index of conv node in computation graph
# index of target node in computation graph
node_index = 1
# total number of conv strategies
# total number of target node strategies
strategy_number = 16
mem_test_for_node_strategy(rank=rank,
model=model,

View File

@@ -34,9 +34,9 @@ def _adaptiveavgpool_module_mem_test(rank, world_size, port):
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# index of conv node in computation graph
# index of target node in computation graph
node_index = 1
# total number of conv strategies
# total number of target strategies
strategy_number = 1
mem_test_for_node_strategy(rank=rank,
model=model,
@@ -75,9 +75,9 @@ def _maxpool_module_mem_test(rank, world_size, port):
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# index of conv node in computation graph
# index of target node in computation graph
node_index = 1
# total number of conv strategies
# total number of target node strategies
strategy_number = 9
mem_test_for_node_strategy(rank=rank,
model=model,