mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-16 06:30:41 +00:00
[test] refactored testing components (#324)
This commit is contained in:
1
tests/components_to_test/__init__.py
Normal file
1
tests/components_to_test/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from . import repeated_computed_layer, resnet, nested_model
|
49
tests/components_to_test/nested_model.py
Normal file
49
tests/components_to_test/nested_model.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .utils import DummyDataGenerator
|
||||
from .registry import non_distributed_component_funcs
|
||||
|
||||
|
||||
class SubNet(nn.Module):
|
||||
|
||||
def __init__(self, out_features) -> None:
|
||||
super().__init__()
|
||||
self.bias = nn.Parameter(torch.zeros(out_features))
|
||||
|
||||
def forward(self, x, weight):
|
||||
return F.linear(x, weight, self.bias)
|
||||
|
||||
|
||||
class NestedNet(nn.Module):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.fc1 = nn.Linear(5, 5)
|
||||
self.sub_fc = SubNet(5)
|
||||
self.fc2 = nn.Linear(5, 2)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.sub_fc(x, self.fc1.weight)
|
||||
x = self.fc1(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
class DummyDataLoader(DummyDataGenerator):
|
||||
|
||||
def generate(self):
|
||||
data = torch.rand(16, 5)
|
||||
label = torch.randint(low=0, high=2, size=(16,))
|
||||
return data, label
|
||||
|
||||
|
||||
@non_distributed_component_funcs.register(name='nested_model')
|
||||
def get_training_components():
|
||||
model = NestedNet()
|
||||
trainloader = DummyDataLoader()
|
||||
testloader = DummyDataLoader()
|
||||
optim = torch.optim.Adam(model.parameters(), lr=0.001)
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
return model, trainloader, testloader, optim, criterion
|
39
tests/components_to_test/registry.py
Normal file
39
tests/components_to_test/registry.py
Normal file
@@ -0,0 +1,39 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
|
||||
class Registry:
|
||||
|
||||
def __init__(self):
|
||||
self._registry = dict()
|
||||
|
||||
def register(self, name):
|
||||
assert name not in self._registry
|
||||
|
||||
def _regsiter(callable_):
|
||||
self._registry[name] = callable_
|
||||
|
||||
return _regsiter
|
||||
|
||||
def get_callable(self, name: str):
|
||||
return self._registry[name]
|
||||
|
||||
def __iter__(self):
|
||||
self._idx = 0
|
||||
self._len = len(self._registry)
|
||||
self._names = list(self._registry.keys())
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self._idx < self._len:
|
||||
key = self._names[self._idx]
|
||||
callable_ = self._registry[key]
|
||||
self._idx += 1
|
||||
return callable_
|
||||
else:
|
||||
raise StopIteration
|
||||
|
||||
|
||||
non_distributed_component_funcs = Registry()
|
||||
model_paralle_component_funcs = Registry()
|
||||
|
||||
__all__ = ['non_distributed_component_funcs', 'model_paralle_component_funcs']
|
44
tests/components_to_test/repeated_computed_layer.py
Normal file
44
tests/components_to_test/repeated_computed_layer.py
Normal file
@@ -0,0 +1,44 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.nn import CheckpointModule
|
||||
from .utils.dummy_data_generator import DummyDataGenerator
|
||||
from .registry import non_distributed_component_funcs
|
||||
|
||||
|
||||
class NetWithRepeatedlyComputedLayers(CheckpointModule):
|
||||
"""
|
||||
This model is to test with layers which go through forward pass multiple times.
|
||||
In this model, the fc1 and fc2 call forward twice
|
||||
"""
|
||||
|
||||
def __init__(self, checkpoint=False) -> None:
|
||||
super().__init__(checkpoint=checkpoint)
|
||||
self.fc1 = nn.Linear(5, 5)
|
||||
self.fc2 = nn.Linear(5, 5)
|
||||
self.fc3 = nn.Linear(5, 2)
|
||||
self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3]
|
||||
|
||||
def forward(self, x):
|
||||
for layer in self.layers:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class DummyDataLoader(DummyDataGenerator):
|
||||
|
||||
def generate(self):
|
||||
data = torch.rand(16, 5)
|
||||
label = torch.randint(low=0, high=2, size=(16,))
|
||||
return data, label
|
||||
|
||||
|
||||
@non_distributed_component_funcs.register(name='repeated_computed_layers')
|
||||
def get_training_components():
|
||||
model = NetWithRepeatedlyComputedLayers(checkpoint=True)
|
||||
trainloader = DummyDataLoader()
|
||||
testloader = DummyDataLoader()
|
||||
optim = torch.optim.Adam(model.parameters(), lr=0.001)
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
return model, trainloader, testloader, optim, criterion
|
30
tests/components_to_test/resnet.py
Normal file
30
tests/components_to_test/resnet.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from torchvision.models import resnet18
|
||||
from .registry import non_distributed_component_funcs
|
||||
from pathlib import Path
|
||||
import os
|
||||
import torch
|
||||
from torchvision.transforms import transforms
|
||||
from torchvision.datasets import CIFAR10
|
||||
from colossalai.utils import get_dataloader
|
||||
|
||||
|
||||
def get_cifar10_dataloader(train):
|
||||
# build dataloaders
|
||||
dataset = CIFAR10(root=Path(os.environ['DATA']),
|
||||
download=True,
|
||||
train=train,
|
||||
transform=transforms.Compose(
|
||||
[transforms.ToTensor(),
|
||||
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]))
|
||||
dataloader = get_dataloader(dataset=dataset, shuffle=True, batch_size=16, drop_last=True)
|
||||
return dataloader
|
||||
|
||||
|
||||
@non_distributed_component_funcs.register(name='resnet18')
|
||||
def get_resnet_training_components():
|
||||
model = resnet18(num_classes=10)
|
||||
trainloader = get_cifar10_dataloader(train=True)
|
||||
testloader = get_cifar10_dataloader(train=False)
|
||||
optim = torch.optim.Adam(model.parameters(), lr=0.001)
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
return model, trainloader, testloader, optim, criterion
|
1
tests/components_to_test/utils/__init__.py
Normal file
1
tests/components_to_test/utils/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .dummy_data_generator import DummyDataGenerator
|
14
tests/components_to_test/utils/dummy_data_generator.py
Normal file
14
tests/components_to_test/utils/dummy_data_generator.py
Normal file
@@ -0,0 +1,14 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class DummyDataGenerator(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def generate(self):
|
||||
pass
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
return self.generate()
|
Reference in New Issue
Block a user