Fixed a bug in the inference frame

This commit is contained in:
yuehuayingxueluo
2023-12-26 21:34:27 +08:00
committed by FrankLeeeee
parent 86853a37d5
commit 62fd08ee44
8 changed files with 261 additions and 90 deletions

View File

@@ -1,6 +1,6 @@
import pytest
import transformers
from transformers import AutoTokenizer
from transformers import AutoTokenizer, GenerationConfig
import colossalai
from colossalai.inference.config import InferenceConfig
@@ -11,21 +11,24 @@ from colossalai.testing import spawn
def check_inference_engine():
model = transformers.LlamaForCausalLM(
transformers.LlamaConfig(
vocab_size=20000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=4
vocab_size=50000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=4
)
)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
inference_config = InferenceConfig()
inference_config = InferenceConfig(max_output_len=5)
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
inputs = [
"介绍一下北京",
"介绍一下今天的北京",
"介绍一下武汉",
]
inference_engine.add_request(prompts=inputs)
assert inference_engine.request_handler._has_waiting()
# outputs = inference_engine.generate(None)
generation_config = GenerationConfig(top_k=2, top_p=0.8, do_sample=True)
outputs = inference_engine.generate(generation_config)
print("outputs: ", outputs)
# Engine still gets some bug