[fx]Split partition with DAG information (#2025)

* add DAG to split_module

* add comment

* add test case for DAG

* remove print

Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
This commit is contained in:
Ziyue Jiang
2022-11-25 17:42:48 +08:00
committed by GitHub
parent ea0f6b8df9
commit 632753abbc
4 changed files with 326 additions and 28 deletions

View File

@@ -0,0 +1,85 @@
import torch
from torch.fx import GraphModule
from colossalai.fx.passes.adding_split_node_pass import split_with_split_nodes_pass, balanced_split_pass
from colossalai.fx import ColoTracer
import random
import numpy as np
MANUAL_SEED = 0
random.seed(MANUAL_SEED)
np.random.seed(MANUAL_SEED)
torch.manual_seed(MANUAL_SEED)
def split_model_and_get_DAG(model, data_gen):
model.eval()
# generate input sample
kwargs = data_gen()
# get origin output and rng state
cpu_rng_state = torch.get_rng_state()
output = model(**kwargs)
# tracing model
tracer = ColoTracer()
try:
meta_args = {k: v.to('meta') for k, v in kwargs.items()}
graph = tracer.trace(root=model, meta_args=meta_args)
except Exception as e:
raise RuntimeError(f"Failed to trace {model.__class__.__name__}, error: {e}")
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
# apply transform passes
annotated_model = balanced_split_pass(gm, 2)
top_module, split_submodules = split_with_split_nodes_pass(annotated_model)
return top_module, split_submodules[0]._DAG
def check_input(input, input_node, top_module):
for user in input_node.users.keys():
partition_name = user.name
assert partition_name in input['output']
def check_submod(submod_partition, node, top_module):
for arg in node.args:
input_part_name = None
if arg.op == 'placeholder':
input_part_name = 'MODEL_INPUT'
elif not arg.name.startswith('getitem'):
input_part_name = arg.name
else:
input_part_name = arg.args[0].name
assert input_part_name in submod_partition['input']
for user in node.users:
output_part_names = []
if user.op == 'output':
output_part_names.append('MODEL_OUTPUT')
elif not user.name.startswith('getitem'):
output_part_names.append(user.name)
else:
for n in user.users:
if n.op == 'output':
output_part_names.append('MODEL_OUTPUT')
else:
output_part_names.append(n.name)
for output_part_name in output_part_names:
assert output_part_name in submod_partition['output']
def check_DAG(top_module, DAG):
assert 'input_partition' in DAG
input_partition = DAG['input_partition']
for node in top_module.graph.nodes:
# check input
if node.op == 'placeholder':
assert node.name in input_partition
input = input_partition[node.name]
check_input(input, node, top_module)
elif node.op == 'call_module':
assert node.name in DAG
submod_partition = DAG[node.name]
check_submod(submod_partition, node, top_module)

View File

@@ -0,0 +1,31 @@
import pytest
import torch
import transformers
from dag_utils import split_model_and_get_DAG, check_DAG
BATCH_SIZE = 1
SEQ_LENGHT = 16
@pytest.mark.skip('balance split v2 is not ready')
def test_opt():
MODEL_LIST = [
transformers.OPTModel,
#transformers.OPTForCausalLM,
]
config = transformers.OPTConfig(vocab_size=100, hidden_size=128, num_hidden_layers=4, num_attention_heads=4)
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
return kwargs
for model_cls in MODEL_LIST:
model = model_cls(config=config)
top_mod, DAG = split_model_and_get_DAG(model, data_gen)
check_DAG(top_mod, DAG)
if __name__ == '__main__':
test_opt()