[test] fixed gemini plugin test (#3411)

* [test] fixed gemini plugin test

* polish code

* polish code
This commit is contained in:
Frank Lee
2023-04-03 17:12:22 +08:00
committed by GitHub
parent 30412866e0
commit 638a07a7f9
7 changed files with 124 additions and 131 deletions

View File

@@ -1,46 +1,44 @@
import time
import pytest
from functools import partial
import pytest
import torch
from torch.utils._pytree import tree_map
import torch.multiprocessing as mp
from torch.utils._pytree import tree_map
import colossalai
from colossalai.nn.optimizer import HybridAdam
from colossalai.fx.profiler import parameter_size
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.utils import free_port, get_current_device
from colossalai.nn.parallel import zero_model_wrapper, zero_optim_wrapper
from colossalai.auto_parallel.offload.amp_optimizer import AMPOptimizer
from colossalai.auto_parallel.offload.mem_optimize import memory_optimize
from colossalai.auto_parallel.offload.solver import NOT_NVML
from colossalai.fx.profiler import parameter_size
from colossalai.nn.optimizer import HybridAdam
from colossalai.nn.parallel import zero_model_wrapper, zero_optim_wrapper
from colossalai.testing import parameterize
from tests.test_tensor.common_utils import set_seed
from colossalai.utils import free_port, get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
from tests.test_auto_parallel.test_offload.model_utils import *
from tests.test_tensor.common_utils import set_seed
@parameterize('model_name', ['gpt2_'])
@parameterize('memory_budget', [5000])
@parameterize('solver_name', ['asyn'])
def exam_fwd_bwd(
model_name: str,
memory_budget: float,
solver_name: str
):
def exam_fwd_bwd(model_name: str, memory_budget: float, solver_name: str):
# build model
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, data_gen = get_components_func()
label = torch.randint(low=0, high=128, size=(64, 8,), device=get_current_device())
label = torch.randint(low=0, high=128, size=(
64,
8,
), device=get_current_device())
criterion = LMLoss()
set_seed(42)
start_time = time.time()
model = model_builder()
model.train()
param_size = parameter_size(model) / 1024 ** 2 / 2
param_size = parameter_size(model) / 1024**2 / 2
init_time = time.time() - start_time
print(f"init_param_size={param_size:.3f} MB | init_model_time={init_time:.3f} s")
@@ -92,13 +90,11 @@ def exam_fwd_bwd(
torch.cuda.synchronize()
exec_time = sum(sorted(time_list)[:5]) / 5
runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024 ** 2
runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024 ** 2
runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024**2
runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024**2
print(f'gemini | model_name: {model_name}')
print(
f'| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB '
f'| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|'
)
print(f'| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB '
f'| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|')
print(time_list)
del data_args
@@ -129,22 +125,26 @@ def exam_fwd_bwd(
torch.cuda.synchronize()
exec_time = sum(sorted(time_list)[:5]) / 5
runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024 ** 2
runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024 ** 2
runtime_peak_mem_alc = torch.cuda.max_memory_allocated() / 1024**2
runtime_peak_mem_res = torch.cuda.max_memory_reserved() / 1024**2
print(f'solver_name: {solver_name} | model_name: {model_name}')
print(
f'| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB '
f'| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|'
)
print(f'| exec_time={exec_time:.3f} s | param_size={param_size:.3f} MB '
f'| runtime_peak_mem_alc={runtime_peak_mem_alc:.3f} MB| runtime_peak_mem_res={runtime_peak_mem_res:.3f} MB|')
print(time_list)
@pytest.mark.skipif(NOT_NVML, reason='pynvml is not installed')
def test_perf(rank, world_size, port):
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_fwd_bwd()
if __name__ == '__main__':
run_func = partial(test_perf, world_size=1, port=free_port())
@pytest.mark.skip("this test failed")
@pytest.mark.skipif(NOT_NVML, reason='pynvml is not installed')
def test_perf():
run_func = partial(run_dist, world_size=1, port=free_port())
mp.spawn(run_func, nprocs=1)
if __name__ == '__main__':
test_perf()