mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-11 22:10:37 +00:00
[example] removed duplicated stable diffusion example (#2424)
This commit is contained in:
@@ -39,9 +39,6 @@ quickly deploy large AI model training and inference, reducing large AI model tr
|
||||
- Try pre-trained OPT model weights with Colossal-AI
|
||||
- Fine-tuning OPT with limited hardware using ZeRO, Gemini and parallelism
|
||||
- Deploy the fine-tuned model to inference service
|
||||
- Acceleration of Stable Diffusion
|
||||
- Stable Diffusion with Lightning
|
||||
- Try Lightning Colossal-AI strategy to optimize memory and accelerate speed
|
||||
|
||||
|
||||
## Discussion
|
||||
@@ -168,26 +165,3 @@ docker run -it --rm --gpus all --ipc host -p 7070:7070 hpcaitech/tutorial:opt-in
|
||||
```bash
|
||||
python opt_fastapi.py opt-125m --tp 2 --checkpoint /data/opt-125m
|
||||
```
|
||||
|
||||
## 🖼️ Accelerate Stable Diffusion with Colossal-AI
|
||||
1. Create a new environment for diffusion
|
||||
```bash
|
||||
conda env create -f environment.yaml
|
||||
conda activate ldm
|
||||
```
|
||||
2. Install Colossal-AI from our official page
|
||||
```bash
|
||||
pip install colossalai==0.1.10+torch1.11cu11.3 -f https://release.colossalai.org
|
||||
```
|
||||
3. Install PyTorch Lightning compatible commit
|
||||
```bash
|
||||
git clone https://github.com/Lightning-AI/lightning && cd lightning && git reset --hard b04a7aa
|
||||
pip install -r requirements.txt && pip install .
|
||||
cd ..
|
||||
```
|
||||
|
||||
4. Comment out the `from_pretrained` field in the `train_colossalai_cifar10.yaml`.
|
||||
5. Run training with CIFAR10.
|
||||
```bash
|
||||
python main.py -logdir /tmp -t true -postfix test -b configs/train_colossalai_cifar10.yaml
|
||||
```
|
||||
|
Reference in New Issue
Block a user