mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 19:13:01 +00:00
[refactory] refactory the initialize method for new zero design (#431)
This commit is contained in:
@@ -1,4 +1,8 @@
|
||||
from asyncio.log import logger
|
||||
from distutils.command.config import config
|
||||
from colossalai.zero.sharded_model.sharded_model_v2 import ShardedModelV2
|
||||
from colossalai.zero.sharded_optim.sharded_optim_v2 import ShardedOptimizerV2
|
||||
from colossalai.zero.shard_utils import TensorShardStrategy
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.amp.naive_amp import NaiveAMPModel
|
||||
@@ -7,6 +11,53 @@ from colossalai.core import global_context as gpc
|
||||
from torch.optim import Optimizer
|
||||
from .sharded_model import ShardedModel
|
||||
from .sharded_optim import ShardedOptimizer
|
||||
from colossalai.zero.init_ctx import ZeroInitContext
|
||||
from typing import Callable, Type
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import get_dist_logger
|
||||
|
||||
|
||||
def convert_to_zero_v2(model_builder: Callable, optimizer_config) -> (ShardedModelV2, ShardedOptimizerV2):
|
||||
"""
|
||||
A helper function to integrate the model and optimizer with ZeRO optimizer and off-loading
|
||||
|
||||
:param model: Your model object
|
||||
:type model: :class:`torch.nn.Module`
|
||||
:param optimizer_config: Your optimizer object
|
||||
:type optimizer_config: :class:`dict`
|
||||
|
||||
:return: (model, optimizer)
|
||||
:rtype: Tuple
|
||||
"""
|
||||
|
||||
logger = get_dist_logger('convert_to_zero_v2')
|
||||
|
||||
# FIXME() pass shard strategy from config
|
||||
shard_strategy = TensorShardStrategy()
|
||||
|
||||
if isinstance(model_builder, nn.Module):
|
||||
model = model_builder
|
||||
elif isinstance(model_builder, Callable):
|
||||
with ZeroInitContext(convert_fp16='fp16' in gpc.config,
|
||||
target_device=torch.cuda.current_device(),
|
||||
shard_strategy=shard_strategy,
|
||||
shard_param=True):
|
||||
model = model_builder()
|
||||
else:
|
||||
raise TypeError(f"convert_to_zero_v2 dose not support model_builder of type {type(convert_to_zero_v2)}")
|
||||
|
||||
zero_model = ShardedModelV2(model, shard_strategy=shard_strategy)
|
||||
|
||||
optimizer_class = optimizer_config.get('optimizer_type', None)
|
||||
if optimizer_class is None:
|
||||
raise RuntimeError("Set optimizer_class in zero_config")
|
||||
logger.info(f'optimizer class is {optimizer_class}')
|
||||
|
||||
cfg = optimizer_config.get('optimizer_config', None)
|
||||
logger.info(f'optimizer_config is {cfg}')
|
||||
|
||||
zero_optimizer = ShardedOptimizerV2(zero_model, optimizer_class, **optimizer_config.get('optimizer_config', None))
|
||||
return zero_model, zero_optimizer
|
||||
|
||||
|
||||
def convert_to_zero(model: nn.Module, optimizer: Optimizer, level: int, zero_config: dict):
|
||||
|
Reference in New Issue
Block a user