mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 09:07:51 +00:00
[refactory] refactory the initialize method for new zero design (#431)
This commit is contained in:
@@ -19,9 +19,10 @@ def run_dist(rank, world_size, port):
|
||||
# as this model has sync batch normalization
|
||||
# need to configure cudnn deterministic so that
|
||||
# randomness of convolution layers will be disabled
|
||||
colossalai.launch(config=dict(zero=dict(level=2, partition_grad=True),
|
||||
cudnn_determinstic=True,
|
||||
cudnn_benchmark=False),
|
||||
colossalai.launch(config=dict(
|
||||
zero=dict(optimzer=dict(optimizer_type=torch.optim.Adam, optimizer_config=dict(lr=1e-3))),
|
||||
cudnn_determinstic=True,
|
||||
cudnn_benchmark=False),
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
host='localhost',
|
||||
|
92
tests/test_zero_data_parallel/test_zero_init_v2.py
Normal file
92
tests/test_zero_data_parallel/test_zero_init_v2.py
Normal file
@@ -0,0 +1,92 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import copy
|
||||
from functools import partial
|
||||
import pytest
|
||||
|
||||
import colossalai
|
||||
from colossalai.utils import free_port
|
||||
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
|
||||
from common import check_sharded_params_padding
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
_config = dict(fp16=dict(mode=None,),
|
||||
zero=dict(optimzer=dict(optimizer_type=torch.optim.Adam, optimizer_config=dict(lr=1e-3)),
|
||||
offload_optimizer_config=dict(device='cpu',
|
||||
pin_memory=True,
|
||||
buffer_count=5,
|
||||
fast_init=False),
|
||||
offload_param_config=dict(device='cpu',
|
||||
pin_memory=True,
|
||||
buffer_count=5,
|
||||
buffer_size=1e8,
|
||||
max_in_cpu=1e9)),
|
||||
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)))
|
||||
|
||||
colossalai.launch(config=_config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
# FIXME revert back
|
||||
# test_models = ['repeated_computed_layers', 'resnet18', 'bert']
|
||||
test_models = ['bert']
|
||||
for model_name in test_models:
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
|
||||
|
||||
# adapt to a Callbale with empty parameters
|
||||
# def module_builder_new():
|
||||
# return model_builder(checkpoint=True)
|
||||
|
||||
zero_model = model_builder(checkpoint=True)
|
||||
torch_model = copy.deepcopy(zero_model).cuda()
|
||||
engine, train_dataloader, _, _ = colossalai.initialize(zero_model,
|
||||
optimizer=optimizer_class,
|
||||
criterion=criterion,
|
||||
train_dataloader=train_dataloader)
|
||||
engine.train()
|
||||
torch_optimizer = optimizer_class(torch_model.parameters())
|
||||
|
||||
i = 0
|
||||
for data, label in train_dataloader:
|
||||
if i > 3:
|
||||
break
|
||||
|
||||
data, label = data.cuda(), label.cuda()
|
||||
|
||||
engine.zero_grad()
|
||||
torch_optimizer.zero_grad()
|
||||
|
||||
if criterion:
|
||||
output = engine(data)
|
||||
loss = engine.criterion(output, label)
|
||||
|
||||
torch_model(data, label)
|
||||
torch_loss = engine.criterion(output, label)
|
||||
else:
|
||||
loss = engine(data, label)
|
||||
torch_loss = torch_model(data, label)
|
||||
|
||||
engine.backward(loss)
|
||||
engine.step()
|
||||
|
||||
torch_loss.backward()
|
||||
torch_optimizer.step()
|
||||
i += 1
|
||||
|
||||
check_sharded_params_padding(torch_model, zero_model, loose=True)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [1, 2])
|
||||
def test_zero_init(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_zero_init(world_size=2)
|
Reference in New Issue
Block a user