mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-13 05:01:44 +00:00
[devops] remove post commit ci (#5566)
* [devops] remove post commit ci * [misc] run pre-commit on all files * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -24,6 +24,7 @@ from langchain.pydantic_v1 import Field
|
||||
from langchain.schema import BaseRetriever, Document
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
|
||||
|
||||
class CustomBaseRetrievalQA(BaseRetrievalQA):
|
||||
"""Base class for question-answering chains."""
|
||||
|
||||
@@ -98,7 +99,6 @@ class CustomBaseRetrievalQA(BaseRetrievalQA):
|
||||
for k, v in inputs.items()
|
||||
if k in ["stop", "temperature", "top_k", "top_p", "max_new_tokens", "doc_prefix"]
|
||||
}
|
||||
answers = []
|
||||
if self.combine_documents_chain.memory is not None:
|
||||
buffered_history_backup, summarized_history_temp_backup = copy.deepcopy(
|
||||
self.combine_documents_chain.memory.buffered_history
|
||||
@@ -117,10 +117,10 @@ class CustomBaseRetrievalQA(BaseRetrievalQA):
|
||||
) = copy.deepcopy(buffered_history_backup), copy.deepcopy(summarized_history_temp_backup)
|
||||
|
||||
# if rejection_trigger_keywords is not given, return the response from LLM directly
|
||||
rejection_trigger_keywords = inputs.get('rejection_trigger_keywords', [])
|
||||
rejection_trigger_keywords = inputs.get("rejection_trigger_keywords", [])
|
||||
answer = answer if all([rej not in answer for rej in rejection_trigger_keywords]) else None
|
||||
if answer is None:
|
||||
answer = inputs.get('rejection_answer', "抱歉,根据提供的信息无法回答该问题。")
|
||||
if answer is None:
|
||||
answer = inputs.get("rejection_answer", "抱歉,根据提供的信息无法回答该问题。")
|
||||
if self.combine_documents_chain.memory is not None:
|
||||
self.combine_documents_chain.memory.save_context({"question": question}, {"output": answer})
|
||||
|
||||
@@ -161,10 +161,14 @@ class CustomBaseRetrievalQA(BaseRetrievalQA):
|
||||
input_documents=docs, question=question, callbacks=_run_manager.get_child(), **kwargs
|
||||
)
|
||||
# if rejection_trigger_keywords is not given, return the response from LLM directly
|
||||
rejection_trigger_keywords = inputs.get('rejection_trigger_keywords', [])
|
||||
answer = answer if all([rej not in answer for rej in rejection_trigger_keywords]) or len(rejection_trigger_keywords)==0 else None
|
||||
rejection_trigger_keywords = inputs.get("rejection_trigger_keywords", [])
|
||||
answer = (
|
||||
answer
|
||||
if all([rej not in answer for rej in rejection_trigger_keywords]) or len(rejection_trigger_keywords) == 0
|
||||
else None
|
||||
)
|
||||
if answer is None:
|
||||
answer = inputs.get('rejection_answer', "抱歉,根据提供的信息无法回答该问题。")
|
||||
answer = inputs.get("rejection_answer", "抱歉,根据提供的信息无法回答该问题。")
|
||||
self.combine_documents_chain.memory.save_context({"question": question}, {"output": answer})
|
||||
|
||||
if self.return_source_documents:
|
||||
|
@@ -126,7 +126,7 @@ class DocumentLoader:
|
||||
else:
|
||||
# May ba a directory, we strictly follow the glob path and will not load files in subdirectories
|
||||
pass
|
||||
|
||||
|
||||
def clear(self):
|
||||
"""
|
||||
Clear loaded data.
|
||||
|
@@ -1,39 +1,40 @@
|
||||
'''
|
||||
"""
|
||||
Class for loading table type data. please refer to Pandas-Input/Output for file format details.
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
import os
|
||||
import glob
|
||||
import os
|
||||
|
||||
import pandas as pd
|
||||
from sqlalchemy import create_engine
|
||||
from colossalqa.utils import drop_table
|
||||
from colossalqa.mylogging import get_logger
|
||||
from colossalqa.utils import drop_table
|
||||
from sqlalchemy import create_engine
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
SUPPORTED_DATA_FORMAT = ['.csv','.xlsx', '.xls','.json','.html','.h5', '.hdf5','.parquet','.feather','.dta']
|
||||
SUPPORTED_DATA_FORMAT = [".csv", ".xlsx", ".xls", ".json", ".html", ".h5", ".hdf5", ".parquet", ".feather", ".dta"]
|
||||
|
||||
|
||||
class TableLoader:
|
||||
'''
|
||||
"""
|
||||
Load tables from different files and serve a sql database for database operations
|
||||
'''
|
||||
def __init__(self, files: str,
|
||||
sql_path:str='sqlite:///mydatabase.db',
|
||||
verbose=False, **kwargs) -> None:
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self, files: str, sql_path: str = "sqlite:///mydatabase.db", verbose=False, **kwargs) -> None:
|
||||
"""
|
||||
Args:
|
||||
files: list of files (list[file path, name])
|
||||
sql_path: how to serve the sql database
|
||||
**kwargs: keyword type arguments, useful for certain document types
|
||||
'''
|
||||
**kwargs: keyword type arguments, useful for certain document types
|
||||
"""
|
||||
self.data = {}
|
||||
self.verbose = verbose
|
||||
self.sql_path = sql_path
|
||||
self.kwargs = kwargs
|
||||
self.sql_engine = create_engine(self.sql_path)
|
||||
drop_table(self.sql_engine)
|
||||
|
||||
|
||||
self.sql_engine = create_engine(self.sql_path)
|
||||
for item in files:
|
||||
path = item[0]
|
||||
@@ -42,68 +43,68 @@ class TableLoader:
|
||||
raise FileNotFoundError(f"{path} doesn't exists")
|
||||
if not any([path.endswith(i) for i in SUPPORTED_DATA_FORMAT]):
|
||||
raise TypeError(f"{path} not supported. Supported type {SUPPORTED_DATA_FORMAT}")
|
||||
|
||||
|
||||
logger.info("loading data", verbose=self.verbose)
|
||||
self.load_data(path)
|
||||
logger.info("data loaded", verbose=self.verbose)
|
||||
self.to_sql(path, dataset_name)
|
||||
|
||||
def load_data(self, path):
|
||||
'''
|
||||
"""
|
||||
Load data and serve the data as sql database.
|
||||
Data must be in pandas format
|
||||
'''
|
||||
"""
|
||||
files = []
|
||||
# Handle glob expression
|
||||
try:
|
||||
files = glob.glob(path)
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
if len(files)==0:
|
||||
if len(files) == 0:
|
||||
raise ValueError("Unsupported file/directory format. For directories, please use glob expression")
|
||||
elif len(files)==1:
|
||||
elif len(files) == 1:
|
||||
path = files[0]
|
||||
else:
|
||||
for file in files:
|
||||
self.load_data(file)
|
||||
|
||||
if path.endswith('.csv'):
|
||||
if path.endswith(".csv"):
|
||||
# Load csv
|
||||
self.data[path] = pd.read_csv(path)
|
||||
elif path.endswith('.xlsx') or path.endswith('.xls'):
|
||||
elif path.endswith(".xlsx") or path.endswith(".xls"):
|
||||
# Load excel
|
||||
self.data[path] = pd.read_excel(path) # You can adjust the sheet_name as needed
|
||||
elif path.endswith('.json'):
|
||||
elif path.endswith(".json"):
|
||||
# Load json
|
||||
self.data[path] = pd.read_json(path)
|
||||
elif path.endswith('.html'):
|
||||
elif path.endswith(".html"):
|
||||
# Load html
|
||||
html_tables = pd.read_html(path)
|
||||
# Choose the desired table from the list of DataFrame objects
|
||||
self.data[path] = html_tables[0] # You may need to adjust this index
|
||||
elif path.endswith('.h5') or path.endswith('.hdf5'):
|
||||
elif path.endswith(".h5") or path.endswith(".hdf5"):
|
||||
# Load h5
|
||||
self.data[path] = pd.read_hdf(path, key=self.kwargs.get('key', 'data')) # You can adjust the key as needed
|
||||
elif path.endswith('.parquet'):
|
||||
self.data[path] = pd.read_hdf(path, key=self.kwargs.get("key", "data")) # You can adjust the key as needed
|
||||
elif path.endswith(".parquet"):
|
||||
# Load parquet
|
||||
self.data[path] = pd.read_parquet(path, engine='fastparquet')
|
||||
elif path.endswith('.feather'):
|
||||
self.data[path] = pd.read_parquet(path, engine="fastparquet")
|
||||
elif path.endswith(".feather"):
|
||||
# Load feather
|
||||
self.data[path] = pd.read_feather(path)
|
||||
elif path.endswith('.dta'):
|
||||
elif path.endswith(".dta"):
|
||||
# Load dta
|
||||
self.data[path] = pd.read_stata(path)
|
||||
else:
|
||||
raise ValueError("Unsupported file format")
|
||||
|
||||
|
||||
def to_sql(self, path, table_name):
|
||||
'''
|
||||
"""
|
||||
Serve the data as sql database.
|
||||
'''
|
||||
self.data[path].to_sql(table_name, con=self.sql_engine, if_exists='replace', index=False)
|
||||
"""
|
||||
self.data[path].to_sql(table_name, con=self.sql_engine, if_exists="replace", index=False)
|
||||
logger.info(f"Loaded to Sqlite3\nPath: {path}", verbose=self.verbose)
|
||||
return self.sql_path
|
||||
|
||||
|
||||
def get_sql_path(self):
|
||||
return self.sql_path
|
||||
|
||||
@@ -113,7 +114,3 @@ class TableLoader:
|
||||
self.sql_engine.dispose()
|
||||
del self.data
|
||||
del self.sql_engine
|
||||
|
||||
|
||||
|
||||
|
||||
|
@@ -21,7 +21,7 @@ print(resp) # super-heavyweight awesome-natured yawning Australian creature!
|
||||
|
||||
"""
|
||||
import json
|
||||
from typing import Any, List, Mapping, Optional
|
||||
from typing import Any, Mapping
|
||||
|
||||
import requests
|
||||
from langchain.llms.base import LLM
|
||||
@@ -31,31 +31,31 @@ from langchain.utils import get_from_dict_or_env
|
||||
class ColossalCloudLLM(LLM):
|
||||
"""
|
||||
A custom LLM class that integrates LLMs running on the ColossalCloud Platform
|
||||
|
||||
|
||||
"""
|
||||
n: int
|
||||
gen_config: dict = None
|
||||
|
||||
n: int
|
||||
gen_config: dict = None
|
||||
auth_config: dict = None
|
||||
valid_gen_para: list = ['max_new_tokens', 'top_k',
|
||||
'top_p', 'temperature', 'repetition_penalty']
|
||||
valid_gen_para: list = ["max_new_tokens", "top_k", "top_p", "temperature", "repetition_penalty"]
|
||||
|
||||
def __init__(self, gen_config=None, **kwargs):
|
||||
"""
|
||||
Args:
|
||||
gen_config: config for generation,
|
||||
max_new_tokens: 50 by default
|
||||
top_k: (1, vocab_size)
|
||||
top_k: (1, vocab_size)
|
||||
top_p: (0, 1) if not None
|
||||
temperature: (0, inf) if not None
|
||||
temperature: (0, inf) if not None
|
||||
repetition_penalty: (1, inf) if not None
|
||||
"""
|
||||
super(ColossalCloudLLM, self).__init__(**kwargs)
|
||||
if gen_config is None:
|
||||
self.gen_config = {"max_new_tokens": 50}
|
||||
else:
|
||||
if gen_config is None:
|
||||
self.gen_config = {"max_new_tokens": 50}
|
||||
else:
|
||||
assert "max_new_tokens" in gen_config, "max_new_tokens is a compulsory key in the gen config"
|
||||
self.gen_config = gen_config
|
||||
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
@@ -63,17 +63,17 @@ class ColossalCloudLLM(LLM):
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return 'ColossalCloudLLM'
|
||||
|
||||
return "ColossalCloudLLM"
|
||||
|
||||
def set_auth_config(self, **kwargs):
|
||||
url = get_from_dict_or_env(kwargs, "url", "URL")
|
||||
host = get_from_dict_or_env(kwargs, "host", "HOST")
|
||||
|
||||
|
||||
auth_config = {}
|
||||
auth_config['endpoint'] = url
|
||||
auth_config['Host'] = host
|
||||
auth_config["endpoint"] = url
|
||||
auth_config["Host"] = host
|
||||
self.auth_config = auth_config
|
||||
|
||||
|
||||
def _call(self, prompt: str, stop=None, **kwargs: Any) -> str:
|
||||
"""
|
||||
Args:
|
||||
@@ -81,15 +81,17 @@ class ColossalCloudLLM(LLM):
|
||||
stop: A list of strings to stop generation when encountered
|
||||
|
||||
Returns:
|
||||
The string generated by the model
|
||||
The string generated by the model
|
||||
"""
|
||||
# Update the generation arguments
|
||||
for key, value in kwargs.items():
|
||||
if key not in self.valid_gen_para:
|
||||
raise KeyError(f"Invalid generation parameter: '{key}'. Valid keys are: {', '.join(self.valid_gen_para)}")
|
||||
raise KeyError(
|
||||
f"Invalid generation parameter: '{key}'. Valid keys are: {', '.join(self.valid_gen_para)}"
|
||||
)
|
||||
if key in self.gen_config:
|
||||
self.gen_config[key] = value
|
||||
|
||||
|
||||
resp_text = self.text_completion(prompt, self.gen_config, self.auth_config)
|
||||
# TODO: This may cause excessive tokens count
|
||||
if stop is not None:
|
||||
@@ -97,29 +99,19 @@ class ColossalCloudLLM(LLM):
|
||||
if stopping_words in resp_text:
|
||||
resp_text = resp_text.split(stopping_words)[0]
|
||||
return resp_text
|
||||
|
||||
|
||||
def text_completion(self, prompt, gen_config, auth_config):
|
||||
# Required Parameters
|
||||
endpoint = auth_config.pop('endpoint')
|
||||
max_new_tokens = gen_config.pop('max_new_tokens')
|
||||
endpoint = auth_config.pop("endpoint")
|
||||
max_new_tokens = gen_config.pop("max_new_tokens")
|
||||
# Optional Parameters
|
||||
optional_params = ['top_k', 'top_p', 'temperature', 'repetition_penalty'] # Self.optional
|
||||
optional_params = ["top_k", "top_p", "temperature", "repetition_penalty"] # Self.optional
|
||||
gen_config = {key: gen_config[key] for key in optional_params if key in gen_config}
|
||||
# Define the data payload
|
||||
data = {
|
||||
"max_new_tokens": max_new_tokens,
|
||||
"history": [
|
||||
{"instruction": prompt, "response": ""}
|
||||
],
|
||||
**gen_config
|
||||
}
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
**auth_config # 'Host',
|
||||
}
|
||||
data = {"max_new_tokens": max_new_tokens, "history": [{"instruction": prompt, "response": ""}], **gen_config}
|
||||
headers = {"Content-Type": "application/json", **auth_config} # 'Host',
|
||||
# Make the POST request
|
||||
response = requests.post(endpoint, headers=headers, data=json.dumps(data))
|
||||
response.raise_for_status() # raise error if return code is not 200(success)
|
||||
response.raise_for_status() # raise error if return code is not 200(success)
|
||||
# Check the response
|
||||
return response.text
|
||||
|
@@ -193,4 +193,3 @@ class VllmLLM(LLM):
|
||||
def _identifying_params(self) -> Mapping[str, int]:
|
||||
"""Get the identifying parameters."""
|
||||
return {"n": self.n}
|
||||
|
||||
|
@@ -4,7 +4,6 @@ All custom prompt templates are defined here.
|
||||
|
||||
from langchain.prompts.prompt import PromptTemplate
|
||||
|
||||
|
||||
# Below are Chinese retrieval qa prompts
|
||||
|
||||
_CUSTOM_SUMMARIZER_TEMPLATE_ZH = """请递进式地总结所提供的当前对话,将当前对话的摘要内容添加到先前已有的摘要上,返回一个融合了当前对话的新的摘要。
|
||||
|
@@ -99,13 +99,7 @@ class CustomRetriever(BaseRetriever):
|
||||
def clear_documents(self):
|
||||
"""Clear all document vectors from database"""
|
||||
for source in self.vector_stores:
|
||||
index(
|
||||
[],
|
||||
self.record_managers[source],
|
||||
self.vector_stores[source],
|
||||
cleanup="full",
|
||||
source_id_key="source"
|
||||
)
|
||||
index([], self.record_managers[source], self.vector_stores[source], cleanup="full", source_id_key="source")
|
||||
self.vector_stores = {}
|
||||
self.sql_index_database = {}
|
||||
self.record_managers = {}
|
||||
|
Reference in New Issue
Block a user