mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
[devops] remove post commit ci (#5566)
* [devops] remove post commit ci * [misc] run pre-commit on all files * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -1,21 +1,21 @@
|
||||
import os
|
||||
|
||||
from colossalqa.data_loader.document_loader import DocumentLoader
|
||||
|
||||
|
||||
def test_add_document():
|
||||
PATH = os.environ.get('TEST_DOCUMENT_LOADER_DATA_PATH')
|
||||
files = [[PATH, 'all data']]
|
||||
PATH = os.environ.get("TEST_DOCUMENT_LOADER_DATA_PATH")
|
||||
files = [[PATH, "all data"]]
|
||||
document_loader = DocumentLoader(files)
|
||||
documents = document_loader.all_data
|
||||
all_files = []
|
||||
for doc in documents:
|
||||
assert isinstance(doc.page_content, str)==True
|
||||
if doc.metadata['source'] not in all_files:
|
||||
all_files.append(doc.metadata['source'])
|
||||
assert isinstance(doc.page_content, str) == True
|
||||
if doc.metadata["source"] not in all_files:
|
||||
all_files.append(doc.metadata["source"])
|
||||
print(all_files)
|
||||
assert len(all_files) == 6
|
||||
|
||||
|
||||
if __name__=='__main__':
|
||||
if __name__ == "__main__":
|
||||
test_add_document()
|
||||
|
||||
|
@@ -4,56 +4,44 @@ from colossalqa.retrieval_conversation_universal import UniversalRetrievalConver
|
||||
|
||||
|
||||
def test_en_retrievalQA():
|
||||
data_path_en = os.environ.get('TEST_DATA_PATH_EN')
|
||||
data_path_zh = os.environ.get('TEST_DATA_PATH_ZH')
|
||||
en_model_path = os.environ.get('EN_MODEL_PATH')
|
||||
zh_model_path = os.environ.get('ZH_MODEL_PATH')
|
||||
zh_model_name = os.environ.get('ZH_MODEL_NAME')
|
||||
en_model_name = os.environ.get('EN_MODEL_NAME')
|
||||
sql_file_path = os.environ.get('SQL_FILE_PATH')
|
||||
qa_session = UniversalRetrievalConversation(files_en=[{
|
||||
'data_path': data_path_en,
|
||||
'name': 'company information',
|
||||
'separator': '\n'
|
||||
}],
|
||||
files_zh=[{
|
||||
'data_path': data_path_zh,
|
||||
'name': 'company information',
|
||||
'separator': '\n'
|
||||
}],
|
||||
zh_model_path=zh_model_path,
|
||||
en_model_path=en_model_path,
|
||||
zh_model_name=zh_model_name,
|
||||
en_model_name=en_model_name,
|
||||
sql_file_path=sql_file_path)
|
||||
ans = qa_session.run("which company runs business in hotel industry?", which_language='en')
|
||||
data_path_en = os.environ.get("TEST_DATA_PATH_EN")
|
||||
data_path_zh = os.environ.get("TEST_DATA_PATH_ZH")
|
||||
en_model_path = os.environ.get("EN_MODEL_PATH")
|
||||
zh_model_path = os.environ.get("ZH_MODEL_PATH")
|
||||
zh_model_name = os.environ.get("ZH_MODEL_NAME")
|
||||
en_model_name = os.environ.get("EN_MODEL_NAME")
|
||||
sql_file_path = os.environ.get("SQL_FILE_PATH")
|
||||
qa_session = UniversalRetrievalConversation(
|
||||
files_en=[{"data_path": data_path_en, "name": "company information", "separator": "\n"}],
|
||||
files_zh=[{"data_path": data_path_zh, "name": "company information", "separator": "\n"}],
|
||||
zh_model_path=zh_model_path,
|
||||
en_model_path=en_model_path,
|
||||
zh_model_name=zh_model_name,
|
||||
en_model_name=en_model_name,
|
||||
sql_file_path=sql_file_path,
|
||||
)
|
||||
ans = qa_session.run("which company runs business in hotel industry?", which_language="en")
|
||||
print(ans)
|
||||
|
||||
|
||||
def test_zh_retrievalQA():
|
||||
data_path_en = os.environ.get('TEST_DATA_PATH_EN')
|
||||
data_path_zh = os.environ.get('TEST_DATA_PATH_ZH')
|
||||
en_model_path = os.environ.get('EN_MODEL_PATH')
|
||||
zh_model_path = os.environ.get('ZH_MODEL_PATH')
|
||||
zh_model_name = os.environ.get('ZH_MODEL_NAME')
|
||||
en_model_name = os.environ.get('EN_MODEL_NAME')
|
||||
sql_file_path = os.environ.get('SQL_FILE_PATH')
|
||||
qa_session = UniversalRetrievalConversation(files_en=[{
|
||||
'data_path': data_path_en,
|
||||
'name': 'company information',
|
||||
'separator': '\n'
|
||||
}],
|
||||
files_zh=[{
|
||||
'data_path': data_path_zh,
|
||||
'name': 'company information',
|
||||
'separator': '\n'
|
||||
}],
|
||||
zh_model_path=zh_model_path,
|
||||
en_model_path=en_model_path,
|
||||
zh_model_name=zh_model_name,
|
||||
en_model_name=en_model_name,
|
||||
sql_file_path=sql_file_path)
|
||||
ans = qa_session.run("哪家公司在经营酒店业务?", which_language='zh')
|
||||
data_path_en = os.environ.get("TEST_DATA_PATH_EN")
|
||||
data_path_zh = os.environ.get("TEST_DATA_PATH_ZH")
|
||||
en_model_path = os.environ.get("EN_MODEL_PATH")
|
||||
zh_model_path = os.environ.get("ZH_MODEL_PATH")
|
||||
zh_model_name = os.environ.get("ZH_MODEL_NAME")
|
||||
en_model_name = os.environ.get("EN_MODEL_NAME")
|
||||
sql_file_path = os.environ.get("SQL_FILE_PATH")
|
||||
qa_session = UniversalRetrievalConversation(
|
||||
files_en=[{"data_path": data_path_en, "name": "company information", "separator": "\n"}],
|
||||
files_zh=[{"data_path": data_path_zh, "name": "company information", "separator": "\n"}],
|
||||
zh_model_path=zh_model_path,
|
||||
en_model_path=en_model_path,
|
||||
zh_model_name=zh_model_name,
|
||||
en_model_name=en_model_name,
|
||||
sql_file_path=sql_file_path,
|
||||
)
|
||||
ans = qa_session.run("哪家公司在经营酒店业务?", which_language="zh")
|
||||
print(ans)
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user