[devops] remove post commit ci (#5566)

* [devops] remove post commit ci

* [misc] run pre-commit on all files

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Hongxin Liu
2024-04-08 15:09:40 +08:00
committed by GitHub
parent 341263df48
commit 641b1ee71a
82 changed files with 849 additions and 962 deletions

View File

@@ -119,9 +119,7 @@ def main():
if hasattr(booster.plugin, "stage_manager") and booster.plugin.stage_manager is not None:
# run pipeline forward backward
batch = iter([batch])
outputs = booster.execute_pipeline(
batch, model, criterion, optimizer, return_loss=True
)
outputs = booster.execute_pipeline(batch, model, criterion, optimizer, return_loss=True)
else:
outputs = model(**batch)
loss = criterion(outputs, None)

View File

@@ -121,4 +121,4 @@ class RandomDataset(Dataset):
"input_ids": self.input_ids[idx],
"attention_mask": self.attention_mask[idx],
"labels": self.input_ids[idx],
}
}

View File

@@ -270,9 +270,7 @@ def main():
) as pbar:
for step in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(
dataloader_iter, model, _criterion, optimizer, return_loss=True
)
outputs = booster.execute_pipeline(dataloader_iter, model, _criterion, optimizer, return_loss=True)
loss = outputs["loss"]
else:
batch = next(dataloader_iter)

View File

@@ -285,9 +285,7 @@ def main():
) as pbar:
for step in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(
dataloader_iter, model, _criterion, optimizer, return_loss=True
)
outputs = booster.execute_pipeline(dataloader_iter, model, _criterion, optimizer, return_loss=True)
loss = outputs["loss"]
else:
batch = next(dataloader_iter)

View File

@@ -50,7 +50,6 @@ def all_reduce_mean(x: float, world_size: int) -> float:
class Timer:
def __init__(self) -> None:
self.start_time: Optional[float] = None
self.duration: float = 0.0
@@ -112,7 +111,7 @@ class PerformanceEvaluator:
batch_size, seq_len = input_ids.shape
self.num_samples += batch_size
self.flop += (batch_size * seq_len * self.model_numel * 2 * (3 + int(self.enable_grad_checkpoint)))
self.flop += batch_size * seq_len * self.model_numel * 2 * (3 + int(self.enable_grad_checkpoint))
def on_fit_end(self) -> None:
avg_duration = all_reduce_mean(self.timer.duration, self.world_size)
@@ -122,5 +121,6 @@ class PerformanceEvaluator:
if dist.get_rank() == 0:
print(
f"num_samples: {self.num_samples}, dp_world_size: {self.dp_world_size}, flop: {self.flop}, avg_duration: {avg_duration}, "
f"avg_throughput: {avg_throughput}")
f"avg_throughput: {avg_throughput}"
)
print(f"Throughput: {avg_throughput:.2f} samples/sec, TFLOPS per GPU: {avg_tflops_per_gpu:.2f}")

View File

@@ -16,17 +16,15 @@ def inference(args):
tokenizer = T5Tokenizer.from_pretrained("google/umt5-small")
if args.model == "test":
config = LlamaConfig.from_pretrained("hpcai-tech/openmoe-base")
set_openmoe_args(config,
num_experts=config.num_experts,
moe_layer_interval=config.moe_layer_interval,
enable_kernel=True)
set_openmoe_args(
config, num_experts=config.num_experts, moe_layer_interval=config.moe_layer_interval, enable_kernel=True
)
model = OpenMoeForCausalLM(config)
else:
config = LlamaConfig.from_pretrained(f"hpcai-tech/openmoe-{args.model}")
set_openmoe_args(config,
num_experts=config.num_experts,
moe_layer_interval=config.moe_layer_interval,
enable_kernel=False)
set_openmoe_args(
config, num_experts=config.num_experts, moe_layer_interval=config.moe_layer_interval, enable_kernel=False
)
model = OpenMoeForCausalLM.from_pretrained(f"hpcai-tech/openmoe-{args.model}", config=config)
model = model.eval().bfloat16()
model = model.to(torch.cuda.current_device())

View File

@@ -172,9 +172,9 @@ def make_state_dict(converted_params):
def load_t5x_weights_in_t5(model, config, t5x_checkpoint_path):
"""Replaces the params in model witht the T5X converted params."""
variables = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
converted = convert_t5x_to_pytorch(variables,
num_layers=config.num_hidden_layers,
moe_interval=config.moe_layer_interval)
converted = convert_t5x_to_pytorch(
variables, num_layers=config.num_hidden_layers, moe_interval=config.moe_layer_interval
)
state_dict = make_state_dict(converted)
model.load_state_dict(state_dict, strict=True)
@@ -203,11 +203,9 @@ def convert_t5x_checkpoint_to_pytorch(t5x_checkpoint_path, config_file, pytorch_
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.")
# Required parameters
parser.add_argument("--t5x_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the T5X checkpoint.")
parser.add_argument(
"--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint."
)
parser.add_argument(
"--config_file",
default=None,
@@ -215,10 +213,8 @@ if __name__ == "__main__":
required=True,
help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.",
)
parser.add_argument("--pytorch_dump_path",
default=None,
type=str,
required=True,
help="Path to the output PyTorch model.")
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_t5x_checkpoint_to_pytorch(args.t5x_checkpoint_path, args.config_file, args.pytorch_dump_path)

View File

@@ -41,9 +41,7 @@ def train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, b
# Forward pass
for _ in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(
dataloader, model, _criterion, optimizer, return_loss=True
)
outputs = booster.execute_pipeline(dataloader, model, _criterion, optimizer, return_loss=True)
# Backward and optimize
if is_pp_last_stage:
loss = outputs["loss"]