mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-11-03 07:33:54 +00:00
update sharded optim and fix zero init ctx (#457)
This commit is contained in:
@@ -1,15 +1,13 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import copy
|
||||
from asyncio.log import logger
|
||||
from functools import partial
|
||||
|
||||
import colossalai
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.testing import parameterize
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.zero.init_ctx import ZeroInitContext
|
||||
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
|
||||
@@ -20,36 +18,30 @@ from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
from common import CONFIG, check_grads_padding, run_fwd_bwd
|
||||
from colossalai.testing import parameterize
|
||||
|
||||
|
||||
@parameterize("enable_autocast", [True])
|
||||
@parameterize("use_zero_init_ctx", [True])
|
||||
@parameterize("shard_strategy", [TensorShardStrategy, BucketTensorShardStrategy])
|
||||
def run_model_test(enable_autocast, use_zero_init_ctx, shard_strategy, logger):
|
||||
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
|
||||
def run_model_test(enable_autocast, shard_strategy_class):
|
||||
test_models = ['repeated_computed_layers', 'resnet18', 'bert']
|
||||
shard_strategy = shard_strategy()
|
||||
shard_strategy = shard_strategy_class()
|
||||
for model_name in test_models:
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
||||
|
||||
rm_torch_payload_on_the_fly = False
|
||||
|
||||
if use_zero_init_ctx:
|
||||
with ZeroInitContext(convert_fp16=True,
|
||||
target_device=torch.device(f'cpu:0'),
|
||||
shard_strategy=shard_strategy,
|
||||
shard_param=True,
|
||||
rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly):
|
||||
zero_model = model_builder(checkpoint=True)
|
||||
zero_model = ShardedModelV2(zero_model, shard_strategy, use_memory_tracer=True)
|
||||
with ZeroInitContext(convert_fp16=True,
|
||||
target_device=torch.cuda.current_device(),
|
||||
shard_strategy=shard_strategy,
|
||||
shard_param=True,
|
||||
rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly):
|
||||
zero_model = model_builder(checkpoint=True)
|
||||
zero_model = ShardedModelV2(zero_model, shard_strategy, use_memory_tracer=True)
|
||||
|
||||
model = model_builder(checkpoint=True).half()
|
||||
col_model_deepcopy(zero_model, model)
|
||||
model = model.cuda()
|
||||
else:
|
||||
model = model_builder(checkpoint=True).half().cuda()
|
||||
zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy)
|
||||
model = model_builder(checkpoint=True).half()
|
||||
col_model_deepcopy(zero_model, model)
|
||||
model = model.cuda()
|
||||
|
||||
model = DDP(model)
|
||||
|
||||
@@ -63,15 +55,10 @@ def run_model_test(enable_autocast, use_zero_init_ctx, shard_strategy, logger):
|
||||
|
||||
check_grads_padding(model, zero_model, loose=True)
|
||||
|
||||
# logger.debug('overall cuda ', zero_model._memstats_collector._overall_cuda)
|
||||
# logger.debug('model cuda ', zero_model._memstats_collector._model_data_cuda)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
logger = get_dist_logger()
|
||||
logger.set_level('DEBUG')
|
||||
run_model_test(logger=logger)
|
||||
run_model_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
||||
Reference in New Issue
Block a user