mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 01:55:12 +00:00
[fx] added activation checkpoint codegen (#1355)
This commit is contained in:
@@ -0,0 +1,69 @@
|
||||
import torch
|
||||
import pytest
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
from torch.fx import GraphModule
|
||||
from colossalai.fx import ColoTracer
|
||||
|
||||
try:
|
||||
from colossalai.fx.codegen import ActivationCheckpointCodeGen
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.linear1 = torch.nn.Linear(4, 4)
|
||||
self.linear2 = torch.nn.Linear(4, 4)
|
||||
|
||||
def forward(self, x):
|
||||
return self.linear1(x), self.linear1(x)
|
||||
|
||||
|
||||
class MyModule(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mlp1 = MLP()
|
||||
self.mlp2 = MLP()
|
||||
self.linear3 = torch.nn.Linear(4, 4)
|
||||
|
||||
def forward(self, x):
|
||||
y1, y2 = checkpoint(self.mlp1, x)
|
||||
y3, y4 = checkpoint(self.mlp2, x)
|
||||
return y1 + y2 + y3 + y4
|
||||
|
||||
|
||||
@pytest.mark.skip("torch 1.12 is required")
|
||||
def test_act_ckpt_codegen():
|
||||
# build model and run forward
|
||||
model = MyModule()
|
||||
data = torch.rand(4, 4)
|
||||
non_fx_out = model(data)
|
||||
|
||||
# trace the module and replace codegen
|
||||
tracer = ColoTracer(trace_act_ckpt=True)
|
||||
graph = tracer.trace(model)
|
||||
codegen = ActivationCheckpointCodeGen()
|
||||
graph.set_codegen(codegen)
|
||||
|
||||
# check ops are annotated with ckpt
|
||||
ckpt_nodes = ['mlp1_linear1', 'mlp1_linear1_1', 'mlp2_linear1', 'mlp2_linear1_1']
|
||||
for node in graph.nodes:
|
||||
if node.name in ckpt_nodes:
|
||||
assert hasattr(node, 'activation_checkpoint')
|
||||
|
||||
# assert checkpoint function will be generated
|
||||
code = graph.python_code('self').src
|
||||
assert 'checkpoint_0' in code and 'checkpoint_1' in code
|
||||
|
||||
# recompile and verify the outputs are consistent
|
||||
gm = GraphModule(model, graph)
|
||||
gm.recompile()
|
||||
fx_out = gm(data)
|
||||
assert torch.equal(non_fx_out, fx_out)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_act_ckpt_codegen()
|
Reference in New Issue
Block a user