|
|
|
@@ -7,6 +7,7 @@ from typing import Callable, List, Optional, Tuple, Union
|
|
|
|
|
import torch
|
|
|
|
|
import torch.distributed as dist
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
from torch import Tensor
|
|
|
|
|
from torch.distributed import ProcessGroup
|
|
|
|
|
from torch.nn.parameter import Parameter
|
|
|
|
@@ -24,7 +25,9 @@ from colossalai.tensor.d_tensor.api import (
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
from ._operation import (
|
|
|
|
|
gather_forward_split_backward,
|
|
|
|
|
gather_forward_reducescatter_backward,
|
|
|
|
|
linear_gather_forward_reducescatter_backward,
|
|
|
|
|
linear_reducescatter_forward_gather_backward,
|
|
|
|
|
linear_with_async_comm,
|
|
|
|
|
matmul_gather_forward_reducescatter_backward,
|
|
|
|
|
matmul_with_async_comm,
|
|
|
|
@@ -44,21 +47,25 @@ __all__ = ["FusedLinear1D_Col", "FusedLinear1D_Row", "GPT2FusedLinearConv1D_Col"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def split_fused_qkv_in_gpt2_style(
|
|
|
|
|
qkv: torch.Tensor, n_fused: int, process_group: ProcessGroup, is_transposed: bool = False
|
|
|
|
|
qkv: torch.Tensor, split_sizes: List[int], process_group: ProcessGroup, is_transposed: bool = False
|
|
|
|
|
):
|
|
|
|
|
"""
|
|
|
|
|
The fused qkv tensor looks like [Q1, Q2, K1, K2, V1, V2], this function will split them into [Q1, K1, V1] and [Q2, K2, V2].
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
qkv (torch.Tensor): The fused qkv tensor.
|
|
|
|
|
n_fused (int): The number items fused together, defaults to 3 (query, key and value).
|
|
|
|
|
split_sizes (List[int]): The sizes of the split tensor.
|
|
|
|
|
process_group (ProcessGroup): The process group for distributed communication.
|
|
|
|
|
is_transposed (bool): generally the tensor is the shape of (out_features, in_features). Set this to True if the tensor is in the shape (in_features, out_features).
|
|
|
|
|
"""
|
|
|
|
|
# get the number of slice for the fused qkv
|
|
|
|
|
rank = dist.get_rank(group=process_group)
|
|
|
|
|
world_size = dist.get_world_size(group=process_group)
|
|
|
|
|
order = torch.arange(world_size * n_fused)
|
|
|
|
|
order = torch.arange(world_size * len(split_sizes))
|
|
|
|
|
new_split_sizes = []
|
|
|
|
|
for sz in split_sizes:
|
|
|
|
|
assert sz % world_size == 0, f"size {sz} is not divisible by world_size {world_size}"
|
|
|
|
|
new_split_sizes.extend([sz // world_size] * world_size)
|
|
|
|
|
|
|
|
|
|
# split the fused qkv
|
|
|
|
|
# from
|
|
|
|
@@ -66,9 +73,9 @@ def split_fused_qkv_in_gpt2_style(
|
|
|
|
|
# to
|
|
|
|
|
# [Q1, Q2, K1, K2, V1, V2]
|
|
|
|
|
if is_transposed:
|
|
|
|
|
weight_chunks = torch.chunk(qkv, world_size * n_fused, dim=-1)
|
|
|
|
|
weight_chunks = torch.split(qkv, new_split_sizes, dim=-1)
|
|
|
|
|
else:
|
|
|
|
|
weight_chunks = torch.chunk(qkv, world_size * n_fused, dim=0)
|
|
|
|
|
weight_chunks = torch.split(qkv, new_split_sizes, dim=0)
|
|
|
|
|
|
|
|
|
|
# rearrange the slice into the final order
|
|
|
|
|
# from
|
|
|
|
@@ -85,18 +92,23 @@ def split_fused_qkv_in_gpt2_style(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def gather_fused_qkv_in_gpt2_style(
|
|
|
|
|
qkv: torch.Tensor, n_fused: int, process_group: ProcessGroup, is_transposed: bool = False
|
|
|
|
|
qkv: torch.Tensor, split_sizes: List[int], process_group: ProcessGroup, is_transposed: bool = False
|
|
|
|
|
):
|
|
|
|
|
"""
|
|
|
|
|
The splitted qkv tensor looks like [Q1, K1, V1] and [Q2, K2, V2], this function will gather them into [Q1, Q2, K1, K2, V1, V2].
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
qkv (torch.Tensor): The fused qkv tensor.
|
|
|
|
|
n_fused (int): The number items fused together, defaults to 3 (query, key and value).
|
|
|
|
|
split_sizes (List[int]): The sizes of the split tensor.
|
|
|
|
|
process_group (ProcessGroup): The process group for distributed communication.
|
|
|
|
|
is_transposed (bool): generally the tensor is the shape of (out_features, in_features). Set this to True if the tensor is in the shape (in_features, out_features).
|
|
|
|
|
"""
|
|
|
|
|
world_size = dist.get_world_size(group=process_group)
|
|
|
|
|
new_split_sizes = []
|
|
|
|
|
for sz in split_sizes:
|
|
|
|
|
assert sz % world_size == 0, f"size {sz} is not divisible by world_size {world_size}"
|
|
|
|
|
new_split_sizes.append(sz // world_size)
|
|
|
|
|
new_split_sizes = new_split_sizes * world_size
|
|
|
|
|
|
|
|
|
|
# gather the tensors
|
|
|
|
|
# from
|
|
|
|
@@ -121,13 +133,13 @@ def gather_fused_qkv_in_gpt2_style(
|
|
|
|
|
# to
|
|
|
|
|
# [Q1, Q2, K1, K2, V1, V2]
|
|
|
|
|
if is_transposed:
|
|
|
|
|
weight_chunks = torch.chunk(gather_weight, world_size * n_fused, dim=-1)
|
|
|
|
|
weight_chunks = torch.split(gather_weight, new_split_sizes, dim=-1)
|
|
|
|
|
else:
|
|
|
|
|
weight_chunks = torch.chunk(gather_weight, world_size * n_fused, dim=0)
|
|
|
|
|
weight_chunks = torch.split(gather_weight, new_split_sizes, dim=0)
|
|
|
|
|
|
|
|
|
|
reordered_chunk_list = []
|
|
|
|
|
for i in range(n_fused):
|
|
|
|
|
reordered_chunk_list.extend(weight_chunks[i::n_fused])
|
|
|
|
|
for i in range(len(split_sizes)):
|
|
|
|
|
reordered_chunk_list.extend(weight_chunks[i :: len(split_sizes)])
|
|
|
|
|
|
|
|
|
|
if is_transposed:
|
|
|
|
|
reordered_gather_weight = torch.cat(reordered_chunk_list, dim=-1)
|
|
|
|
@@ -136,6 +148,42 @@ def gather_fused_qkv_in_gpt2_style(
|
|
|
|
|
return reordered_gather_weight
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _SplitForwardGatherBackwardFusedQKV(torch.autograd.Function):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def forward(ctx, qkv: torch.Tensor, split_sizes: List[int], process_group: ProcessGroup):
|
|
|
|
|
ctx.split_sizes = split_sizes
|
|
|
|
|
ctx.process_group = process_group
|
|
|
|
|
return split_fused_qkv_in_gpt2_style(qkv, split_sizes, process_group, is_transposed=True)
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def backward(ctx, grad_output):
|
|
|
|
|
grad_output = gather_fused_qkv_in_gpt2_style(
|
|
|
|
|
grad_output, ctx.split_sizes, ctx.process_group, is_transposed=True
|
|
|
|
|
)
|
|
|
|
|
return grad_output, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def split_forward_gather_backward_fused_qkv(qkv: torch.Tensor, split_sizes: List[int], process_group: ProcessGroup):
|
|
|
|
|
return _SplitForwardGatherBackwardFusedQKV.apply(qkv, split_sizes, process_group)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _GatherForwardSplitBackwardFusedQKV(torch.autograd.Function):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def forward(ctx, qkv: torch.Tensor, split_sizes: List[int], process_group: ProcessGroup):
|
|
|
|
|
ctx.split_sizes = split_sizes
|
|
|
|
|
ctx.process_group = process_group
|
|
|
|
|
return gather_fused_qkv_in_gpt2_style(qkv, split_sizes, process_group, is_transposed=True)
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def backward(ctx, grad_output):
|
|
|
|
|
grad_output = split_fused_qkv_in_gpt2_style(grad_output, ctx.split_sizes, ctx.process_group, is_transposed=True)
|
|
|
|
|
return grad_output, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def gather_forward_split_backward_fused_qkv(qkv: torch.Tensor, split_sizes: List[int], process_group: ProcessGroup):
|
|
|
|
|
return _GatherForwardSplitBackwardFusedQKV.apply(qkv, split_sizes, process_group)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GPT2FusedLinearConv1D_Col(ParallelModule):
|
|
|
|
|
r"""Linear layer with column parallelism.
|
|
|
|
|
|
|
|
|
@@ -145,10 +193,10 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
|
|
|
|
|
Args:
|
|
|
|
|
in_features (int): size of each input sample.
|
|
|
|
|
out_features (int): size of each output sample.
|
|
|
|
|
split_sizes (List[int]): The sizes of the split tensor.
|
|
|
|
|
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
|
|
|
|
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
|
|
|
|
|
device (`torch.device`): The device of parameters, defaults to None.
|
|
|
|
|
n_fused (int): The number items fused, defaults to 3 (QKV).
|
|
|
|
|
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None.
|
|
|
|
|
seq_parallel_mode (str): If set to ``None``, it will not use sequence parallel, otherwise will use corresponding mode of sequence parallel, defaults to None.
|
|
|
|
|
gather_output (bool, optional): If true, call all-gather on output and make Y available
|
|
|
|
@@ -169,6 +217,7 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
|
|
|
|
|
self,
|
|
|
|
|
in_features: int,
|
|
|
|
|
out_features: int,
|
|
|
|
|
split_sizes: List[int],
|
|
|
|
|
bias: bool = True,
|
|
|
|
|
dtype: torch.dtype = None,
|
|
|
|
|
device: torch.device = None,
|
|
|
|
@@ -178,7 +227,6 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
|
|
|
|
|
seq_parallel_mode: str = None,
|
|
|
|
|
overlap: bool = False,
|
|
|
|
|
skip_bias_add: bool = False,
|
|
|
|
|
n_fused: int = 3,
|
|
|
|
|
weight: Optional[Parameter] = None,
|
|
|
|
|
bias_: Optional[Parameter] = None,
|
|
|
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
|
|
@@ -195,11 +243,15 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
|
|
|
|
|
self.overlap = overlap
|
|
|
|
|
self.skip_bias_add = skip_bias_add
|
|
|
|
|
self.device = device
|
|
|
|
|
self.n_fused = n_fused
|
|
|
|
|
self.split_sizes = split_sizes
|
|
|
|
|
self.process_group = process_group
|
|
|
|
|
self.async_communication = async_communication
|
|
|
|
|
self.fp8_communication = fp8_communication
|
|
|
|
|
|
|
|
|
|
assert (
|
|
|
|
|
sum(split_sizes) == out_features
|
|
|
|
|
), f"The sum of split_sizes({sum(split_sizes)}) should be equal to out_features({out_features})."
|
|
|
|
|
|
|
|
|
|
if skip_bias_add and not bias:
|
|
|
|
|
raise ValueError("cannot skip bias addition if bias is None")
|
|
|
|
|
|
|
|
|
@@ -223,10 +275,10 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
|
|
|
|
|
self.weight = weight
|
|
|
|
|
|
|
|
|
|
def shard_fn(tensor):
|
|
|
|
|
return split_fused_qkv_in_gpt2_style(tensor, self.n_fused, self.process_group, True)
|
|
|
|
|
return split_fused_qkv_in_gpt2_style(tensor, self.split_sizes, self.process_group, True)
|
|
|
|
|
|
|
|
|
|
def gather_fn(tensor):
|
|
|
|
|
return gather_fused_qkv_in_gpt2_style(tensor, self.n_fused, self.process_group, True)
|
|
|
|
|
return gather_fused_qkv_in_gpt2_style(tensor, self.split_sizes, self.process_group, True)
|
|
|
|
|
|
|
|
|
|
if not is_customized_distributed_tensor(self.weight):
|
|
|
|
|
with torch.no_grad():
|
|
|
|
@@ -252,7 +304,11 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def from_native_module(
|
|
|
|
|
module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], *args, **kwargs
|
|
|
|
|
module: nn.Module,
|
|
|
|
|
process_group: Union[ProcessGroup, List[ProcessGroup]],
|
|
|
|
|
split_sizes: List[int],
|
|
|
|
|
*args,
|
|
|
|
|
**kwargs,
|
|
|
|
|
) -> ParallelModule:
|
|
|
|
|
r"""
|
|
|
|
|
Convert a huggingface layer `Conv1D` in gpt2 to a parallelized linear layer.
|
|
|
|
@@ -260,7 +316,7 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
|
|
|
|
|
Args:
|
|
|
|
|
module (`nn.Linear`): The module to be converted.
|
|
|
|
|
process_group (`Union[ProcessGroup, List[ProcessGroup]]`): The process group to be used for weight sharding and communication.
|
|
|
|
|
n_fused (int): The number of layers to be fused. In GPT2, Q,K,V are fused in one weight.
|
|
|
|
|
split_sizes (List[int]): The sizes of the split tensor. In GPT2, Q,K,V are fused in one weight.
|
|
|
|
|
"""
|
|
|
|
|
LazyInitContext.materialize(module)
|
|
|
|
|
# get the attributes
|
|
|
|
@@ -291,6 +347,7 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
|
|
|
|
|
process_group=process_group,
|
|
|
|
|
weight=module.weight,
|
|
|
|
|
bias_=module.bias,
|
|
|
|
|
split_sizes=split_sizes,
|
|
|
|
|
*args,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
@@ -354,9 +411,7 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
|
|
|
|
|
|
|
|
|
|
if self.gather_output:
|
|
|
|
|
# All-gather across the partitions.
|
|
|
|
|
output = gather_forward_split_backward(
|
|
|
|
|
output_parallel, dim=-1, process_group=self.process_group, fp8_communication=self.fp8_communication
|
|
|
|
|
)
|
|
|
|
|
output = gather_forward_split_backward_fused_qkv(output_parallel, self.split_sizes, self.process_group)
|
|
|
|
|
else:
|
|
|
|
|
output = output_parallel
|
|
|
|
|
|
|
|
|
@@ -605,10 +660,10 @@ class FusedLinear1D_Col(ParallelModule):
|
|
|
|
|
Args:
|
|
|
|
|
in_features (int): size of each input sample.
|
|
|
|
|
out_features (int): size of each output sample.
|
|
|
|
|
split_sizes (List[int]): The sizes of the split tensor.
|
|
|
|
|
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
|
|
|
|
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
|
|
|
|
|
device (`torch.device`): The device of parameters, defaults to None.
|
|
|
|
|
n_fused (int): The number items fused, defaults to 3 (QKV).
|
|
|
|
|
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None.
|
|
|
|
|
gather_output (bool, optional): If true, call all-gather on output and make Y available
|
|
|
|
|
to all GPUs, otherwise, every GPU will have its output
|
|
|
|
@@ -628,14 +683,16 @@ class FusedLinear1D_Col(ParallelModule):
|
|
|
|
|
self,
|
|
|
|
|
in_features: int,
|
|
|
|
|
out_features: int,
|
|
|
|
|
split_sizes: List[int],
|
|
|
|
|
bias: bool = True,
|
|
|
|
|
dtype: torch.dtype = None,
|
|
|
|
|
device: torch.device = None,
|
|
|
|
|
process_group: ProcessGroup = None,
|
|
|
|
|
async_communication: bool = False,
|
|
|
|
|
gather_output: bool = False,
|
|
|
|
|
seq_parallel_mode: str = None,
|
|
|
|
|
seq_parallel_dim: int = 1,
|
|
|
|
|
overlap: torch.cuda.Stream = None,
|
|
|
|
|
skip_bias_add: bool = False,
|
|
|
|
|
n_fused: int = 3,
|
|
|
|
|
weight: Optional[Parameter] = None,
|
|
|
|
|
bias_: Optional[Parameter] = None,
|
|
|
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
|
|
@@ -647,13 +704,19 @@ class FusedLinear1D_Col(ParallelModule):
|
|
|
|
|
self.in_features = in_features
|
|
|
|
|
self.out_features = out_features
|
|
|
|
|
self.gather_output = gather_output
|
|
|
|
|
self.seq_parallel_mode = seq_parallel_mode
|
|
|
|
|
self.seq_parallel_dim = seq_parallel_dim
|
|
|
|
|
self.overlap = overlap
|
|
|
|
|
self.skip_bias_add = skip_bias_add
|
|
|
|
|
self.device = device
|
|
|
|
|
self.n_fused = n_fused
|
|
|
|
|
self.split_sizes = split_sizes
|
|
|
|
|
self.process_group = process_group
|
|
|
|
|
self.async_communication = async_communication
|
|
|
|
|
self.fp8_communication = fp8_communication
|
|
|
|
|
|
|
|
|
|
assert (
|
|
|
|
|
sum(split_sizes) == out_features
|
|
|
|
|
), f"The sum of split_sizes({sum(split_sizes)}) should be equal to out_features({out_features})."
|
|
|
|
|
|
|
|
|
|
if skip_bias_add and not bias:
|
|
|
|
|
raise ValueError("cannot skip bias addition if bias is None")
|
|
|
|
|
|
|
|
|
@@ -677,10 +740,10 @@ class FusedLinear1D_Col(ParallelModule):
|
|
|
|
|
self.weight = weight
|
|
|
|
|
|
|
|
|
|
def shard_fn(tensor):
|
|
|
|
|
return split_fused_qkv_in_gpt2_style(tensor, self.n_fused, self.process_group, False)
|
|
|
|
|
return split_fused_qkv_in_gpt2_style(tensor, self.split_sizes, self.process_group, False)
|
|
|
|
|
|
|
|
|
|
def gather_fn(tensor):
|
|
|
|
|
return gather_fused_qkv_in_gpt2_style(tensor, self.n_fused, self.process_group, False)
|
|
|
|
|
return gather_fused_qkv_in_gpt2_style(tensor, self.split_sizes, self.process_group, False)
|
|
|
|
|
|
|
|
|
|
if not is_customized_distributed_tensor(self.weight):
|
|
|
|
|
with torch.no_grad():
|
|
|
|
@@ -706,7 +769,11 @@ class FusedLinear1D_Col(ParallelModule):
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def from_native_module(
|
|
|
|
|
module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], n_fused: int, *args, **kwargs
|
|
|
|
|
module: nn.Module,
|
|
|
|
|
process_group: Union[ProcessGroup, List[ProcessGroup]],
|
|
|
|
|
split_sizes: List[int],
|
|
|
|
|
*args,
|
|
|
|
|
**kwargs,
|
|
|
|
|
) -> ParallelModule:
|
|
|
|
|
r"""
|
|
|
|
|
Convert a fused `torch.nn.linear` layer to a parallelized linear layer.
|
|
|
|
@@ -714,7 +781,7 @@ class FusedLinear1D_Col(ParallelModule):
|
|
|
|
|
Args:
|
|
|
|
|
module (`nn.Linear`): The module to be converted.
|
|
|
|
|
process_group (`Union[ProcessGroup, List[ProcessGroup]]`): The process group to be used for weight sharding and communication.
|
|
|
|
|
n_fused (int): The number of layers to be fused. In common, Q,K,V are fused in one weight.
|
|
|
|
|
split_sizes (List[int]): The sizes of the split tensor. In common, Q,K,V are fused in one weight.
|
|
|
|
|
"""
|
|
|
|
|
LazyInitContext.materialize(module)
|
|
|
|
|
|
|
|
|
@@ -737,25 +804,11 @@ class FusedLinear1D_Col(ParallelModule):
|
|
|
|
|
process_group=process_group,
|
|
|
|
|
weight=module.weight,
|
|
|
|
|
bias_=module.bias,
|
|
|
|
|
n_fused=n_fused,
|
|
|
|
|
split_sizes=split_sizes,
|
|
|
|
|
*args,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# # TODO: copy the sharded weights
|
|
|
|
|
# with torch.no_grad():
|
|
|
|
|
# sharded_weight = split_fused_qkv_in_gpt2_style(module.weight.data,
|
|
|
|
|
# n_fused=n_fused,
|
|
|
|
|
# process_group=process_group,
|
|
|
|
|
# is_transposed=False)
|
|
|
|
|
# linear_1d.weight.data.copy_(sharded_weight.data)
|
|
|
|
|
|
|
|
|
|
# if bias:
|
|
|
|
|
# sharded_bias = split_fused_qkv_in_gpt2_style(module.bias.data,
|
|
|
|
|
# n_fused=n_fused,
|
|
|
|
|
# process_group=process_group,
|
|
|
|
|
# is_transposed=False)
|
|
|
|
|
# linear_1d.bias.data.copy_(sharded_bias.data)
|
|
|
|
|
return linear_1d
|
|
|
|
|
|
|
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
|
|
|
@@ -772,19 +825,30 @@ class FusedLinear1D_Col(ParallelModule):
|
|
|
|
|
input_.shape, self.weight.shape, self.weight.shape[-1]
|
|
|
|
|
)
|
|
|
|
|
# Set up backprop all-reduce.
|
|
|
|
|
# input_parallel = reduce_backward(input_, self.process_group)
|
|
|
|
|
input_parallel = input_
|
|
|
|
|
|
|
|
|
|
# Matrix multiply.
|
|
|
|
|
bias = self.bias if not self.skip_bias_add else None
|
|
|
|
|
|
|
|
|
|
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, True)
|
|
|
|
|
if self.seq_parallel_mode == "split_gather":
|
|
|
|
|
input_parallel = gather_forward_reducescatter_backward(
|
|
|
|
|
input_parallel, self.process_group, self.seq_parallel_dim, fp8_communication=self.fp8_communication
|
|
|
|
|
)
|
|
|
|
|
output_parallel = linear_with_async_comm(
|
|
|
|
|
input_parallel, self.weight, bias, self.process_group, False, fp8_communication=self.fp8_communication
|
|
|
|
|
)
|
|
|
|
|
elif self.seq_parallel_mode == "ring":
|
|
|
|
|
output_parallel = linear_gather_forward_reducescatter_backward(
|
|
|
|
|
input_parallel, self.weight, bias, self.process_group, True, self.seq_parallel_dim, self.overlap, True
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
output_parallel = linear_with_async_comm(
|
|
|
|
|
input_parallel, self.weight, bias, self.process_group, True, fp8_communication=self.fp8_communication
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if self.gather_output:
|
|
|
|
|
# All-gather across the partitions.
|
|
|
|
|
output = gather_forward_split_backward(
|
|
|
|
|
output_parallel, dim=-1, process_group=self.process_group, fp8_communication=self.fp8_communication
|
|
|
|
|
)
|
|
|
|
|
output = gather_forward_split_backward_fused_qkv(output_parallel, self.split_sizes, self.process_group)
|
|
|
|
|
else:
|
|
|
|
|
output = output_parallel
|
|
|
|
|
|
|
|
|
@@ -792,3 +856,201 @@ class FusedLinear1D_Col(ParallelModule):
|
|
|
|
|
return output, self.bias
|
|
|
|
|
else:
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FusedLinear1D_Row(ParallelModule):
|
|
|
|
|
r"""Linear layer with row parallelism
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
in_features (int): size of each input sample.
|
|
|
|
|
out_features (int): size of each output sample.
|
|
|
|
|
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
|
|
|
|
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
|
|
|
|
|
parallel_input (bool): If set to ``True``, it's assumed that the input is split, defaults to False.
|
|
|
|
|
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None.
|
|
|
|
|
seq_parallel_mode (`str`): The type of sp mode, it will use sequence parallel when `seq_parallel_mode` is not None. Defaults to None.
|
|
|
|
|
seq_parallel_dim (`int`): Which dim will sequence parallelism split and gather the sequence.
|
|
|
|
|
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
|
|
|
|
|
which is preserved for kernel fusion, defaults to False
|
|
|
|
|
weight_initializer (:class:`typing.Callable`, optional):
|
|
|
|
|
The initializer of weight, defaults to kaiming uniform initializer.
|
|
|
|
|
bias_initializer (:class:`typing.Callable`, optional):
|
|
|
|
|
The initializer of bias, defaults to xavier uniform initializer.
|
|
|
|
|
|
|
|
|
|
More details about ``initializer`` please refer to
|
|
|
|
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
in_features: int,
|
|
|
|
|
out_features: int,
|
|
|
|
|
split_sizes: List[int],
|
|
|
|
|
bias: bool = True,
|
|
|
|
|
dtype: torch.dtype = None,
|
|
|
|
|
device: torch.device = None,
|
|
|
|
|
process_group: ProcessGroup = None,
|
|
|
|
|
seq_parallel_mode: str = None,
|
|
|
|
|
seq_parallel_dim: int = 1,
|
|
|
|
|
parallel_input: bool = True,
|
|
|
|
|
skip_bias_add: bool = False,
|
|
|
|
|
weight: Optional[Parameter] = None,
|
|
|
|
|
bias_: Optional[Parameter] = None,
|
|
|
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
|
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
|
|
|
|
fp8_communication: bool = False,
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
# Keep input parameters
|
|
|
|
|
self.in_features = in_features
|
|
|
|
|
self.out_features = out_features
|
|
|
|
|
self.split_sizes = split_sizes
|
|
|
|
|
self.parallel_input = parallel_input
|
|
|
|
|
self.skip_bias_add = skip_bias_add
|
|
|
|
|
self.process_group = process_group
|
|
|
|
|
self.seq_parallel_mode = seq_parallel_mode
|
|
|
|
|
self.seq_parallel_dim = seq_parallel_dim
|
|
|
|
|
self.num_partitions = dist.get_world_size(self.process_group)
|
|
|
|
|
self.fp8_communication = fp8_communication
|
|
|
|
|
|
|
|
|
|
assert (
|
|
|
|
|
sum(split_sizes) == in_features
|
|
|
|
|
), f"The sum of split_sizes({sum(split_sizes)}) should be equal to in_features({in_features})."
|
|
|
|
|
|
|
|
|
|
if skip_bias_add and not bias:
|
|
|
|
|
raise ValueError("cannot skip bias addition if bias is None")
|
|
|
|
|
|
|
|
|
|
# offset the seed with randomizer index and rank
|
|
|
|
|
seed = torch.random.initial_seed()
|
|
|
|
|
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group)
|
|
|
|
|
|
|
|
|
|
# sanity check
|
|
|
|
|
if weight is not None:
|
|
|
|
|
assert not bias or bias_ is not None, "bias_ must be provided if bias is True when weight is not None"
|
|
|
|
|
else:
|
|
|
|
|
assert bias_ is None, "bias_ must be None if weight is None"
|
|
|
|
|
|
|
|
|
|
# Parameters.
|
|
|
|
|
if weight is None:
|
|
|
|
|
# Initialize weight.
|
|
|
|
|
factory_kwargs = {"device": device, "dtype": dtype}
|
|
|
|
|
self.weight = Parameter(torch.empty(self.out_features, self.in_features, **factory_kwargs))
|
|
|
|
|
else:
|
|
|
|
|
weight.data = weight.data.to(device=device, dtype=dtype)
|
|
|
|
|
self.weight = weight
|
|
|
|
|
|
|
|
|
|
def shard_fn(tensor):
|
|
|
|
|
return split_fused_qkv_in_gpt2_style(tensor, self.split_sizes, self.process_group, True)
|
|
|
|
|
|
|
|
|
|
def gather_fn(tensor):
|
|
|
|
|
return gather_fused_qkv_in_gpt2_style(tensor, self.split_sizes, self.process_group, True)
|
|
|
|
|
|
|
|
|
|
if not is_customized_distributed_tensor(self.weight):
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
sharded_weight = distribute_tensor_with_customization(self.weight.data, shard_fn, gather_fn)
|
|
|
|
|
customized_distributed_tensor_to_existing_param(sharded_weight, self.weight)
|
|
|
|
|
|
|
|
|
|
if bias:
|
|
|
|
|
if bias_ is None:
|
|
|
|
|
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
|
|
|
|
|
else:
|
|
|
|
|
bias_.data = bias_.data.to(device=device, dtype=dtype)
|
|
|
|
|
self.bias = bias_
|
|
|
|
|
else:
|
|
|
|
|
self.bias = None
|
|
|
|
|
|
|
|
|
|
if weight is None:
|
|
|
|
|
with self.randomizer.fork_rng(enable_cpu=True):
|
|
|
|
|
self.reset_parameters(weight_initializer, bias_initializer)
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def from_native_module(
|
|
|
|
|
module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], split_sizes: List[int], **kwargs
|
|
|
|
|
) -> ParallelModule:
|
|
|
|
|
r"""
|
|
|
|
|
Convert a native PyTorch linear layer to a parallelized linear layer.
|
|
|
|
|
"""
|
|
|
|
|
LazyInitContext.materialize(module)
|
|
|
|
|
# get the attributes
|
|
|
|
|
in_features = module.in_features
|
|
|
|
|
out_features = module.out_features
|
|
|
|
|
bias = module.bias is not None
|
|
|
|
|
device = module.weight.device
|
|
|
|
|
|
|
|
|
|
# ensure only one process group is passed
|
|
|
|
|
if isinstance(process_group, (list, tuple)):
|
|
|
|
|
assert len(process_group) == 1, f"Expected only one process group, got {len(process_group)}."
|
|
|
|
|
process_group = process_group[0]
|
|
|
|
|
|
|
|
|
|
linear_1d = FusedLinear1D_Row(
|
|
|
|
|
in_features=in_features,
|
|
|
|
|
out_features=out_features,
|
|
|
|
|
bias=bias,
|
|
|
|
|
device=device,
|
|
|
|
|
process_group=process_group,
|
|
|
|
|
weight=module.weight,
|
|
|
|
|
bias_=module.bias,
|
|
|
|
|
split_sizes=split_sizes,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return linear_1d
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
|
|
|
|
fan_in, fan_out = self.in_features, self.out_features
|
|
|
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
|
|
|
|
|
|
|
|
if self.bias is not None:
|
|
|
|
|
bias_initializer(self.bias, fan_in=fan_in)
|
|
|
|
|
if self.process_group is None:
|
|
|
|
|
src_rank = 0
|
|
|
|
|
else:
|
|
|
|
|
src_rank = dist.distributed_c10d._get_global_rank(self.process_group, 0)
|
|
|
|
|
|
|
|
|
|
origin_device = self.bias.device
|
|
|
|
|
bias = self.bias.cuda()
|
|
|
|
|
dist.broadcast(bias, src=src_rank, group=self.process_group)
|
|
|
|
|
bias = bias.to(origin_device)
|
|
|
|
|
self.bias.copy_(bias)
|
|
|
|
|
|
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
|
|
|
# Set up backprop all-reduce.
|
|
|
|
|
if self.parallel_input:
|
|
|
|
|
assert (
|
|
|
|
|
input_.shape[-1] == self.weight.shape[-1]
|
|
|
|
|
), "Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.".format(
|
|
|
|
|
input_.shape, self.weight.shape, self.weight.shape[-1]
|
|
|
|
|
)
|
|
|
|
|
input_ = input_
|
|
|
|
|
else:
|
|
|
|
|
assert (
|
|
|
|
|
divide(input_.shape[-1], self.num_partitions) == self.weight.shape[-1]
|
|
|
|
|
), "Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.".format(
|
|
|
|
|
input_.shape, self.weight.shape, self.weight.shape[-1] * self.num_partitions
|
|
|
|
|
)
|
|
|
|
|
input_ = split_forward_gather_backward_fused_qkv(input_, self.split_sizes, self.process_group)
|
|
|
|
|
|
|
|
|
|
if self.seq_parallel_mode == "split_gather":
|
|
|
|
|
output_parallel = F.linear(input_, self.weight)
|
|
|
|
|
output = reducescatter_forward_gather_backward(
|
|
|
|
|
output_parallel, self.process_group, self.seq_parallel_dim, fp8_communication=self.fp8_communication
|
|
|
|
|
)
|
|
|
|
|
elif self.seq_parallel_mode == "ring":
|
|
|
|
|
output = linear_reducescatter_forward_gather_backward(
|
|
|
|
|
input_,
|
|
|
|
|
self.weight,
|
|
|
|
|
process_group=self.process_group,
|
|
|
|
|
dim=self.seq_parallel_dim,
|
|
|
|
|
ring=True,
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
output_parallel = F.linear(input_, self.weight)
|
|
|
|
|
output = reduce_forward(output_parallel, self.process_group, fp8_communication=self.fp8_communication)
|
|
|
|
|
|
|
|
|
|
if not self.skip_bias_add:
|
|
|
|
|
if self.bias is not None:
|
|
|
|
|
output = output + self.bias
|
|
|
|
|
return output
|
|
|
|
|
else:
|
|
|
|
|
return output, self.bias
|
|
|
|
|