mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-04 10:34:41 +00:00
[shardformer] fix linear 1d row and support uneven splits for fused qkv linear (#6084)
* [tp] hotfix linear row * [tp] support uneven split for fused linear * [tp] support sp for fused linear * [tp] fix gpt2 mlp policy * [tp] fix gather fused and add fused linear row
This commit is contained in:
@@ -41,21 +41,6 @@ class Conv1D(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
def rearrange(tensor: torch.Tensor, dim: int):
|
||||
tensor = tensor.clone()
|
||||
world_size = 2
|
||||
order = torch.arange(world_size * 3)
|
||||
new_order = []
|
||||
for i in range(world_size):
|
||||
new_order.append(order[i::world_size])
|
||||
new_order = torch.cat(new_order)
|
||||
|
||||
tensor_chunks = torch.chunk(tensor, world_size * 3, dim=dim)
|
||||
rearanged_tensor_chunks = [tensor_chunks[i] for i in new_order]
|
||||
rearanged_tensor = torch.cat(rearanged_tensor_chunks, dim=dim)
|
||||
return rearanged_tensor
|
||||
|
||||
|
||||
def check_linear_conv_1d_col(lazy_init: bool, seq_parallel_mode: str, overlap: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
@@ -66,7 +51,7 @@ def check_linear_conv_1d_col(lazy_init: bool, seq_parallel_mode: str, overlap: b
|
||||
process_group=None,
|
||||
gather_output=True,
|
||||
seq_parallel_mode=seq_parallel_mode,
|
||||
n_fused=3,
|
||||
split_sizes=[64] * 3,
|
||||
overlap=overlap,
|
||||
)
|
||||
|
||||
@@ -88,13 +73,13 @@ def check_linear_conv_1d_col(lazy_init: bool, seq_parallel_mode: str, overlap: b
|
||||
x.expand_as(x.clone()) if seq_parallel_mode is None else torch.chunk(x.clone(), 2, dim=1)[dist.get_rank()]
|
||||
)
|
||||
gather_out = linear_conv_col(x_for_shard)
|
||||
assert_close(rearrange(out, -1), gather_out)
|
||||
assert_close(out, gather_out)
|
||||
|
||||
# check backward correctness
|
||||
out.sum().backward()
|
||||
gather_out.sum().backward()
|
||||
|
||||
target_grad = split_fused_qkv_in_gpt2_style(linear.weight.grad, 3, None, True)
|
||||
target_grad = split_fused_qkv_in_gpt2_style(linear.weight.grad, [64] * 3, None, True)
|
||||
assert_close(target_grad, linear_conv_col.weight.grad)
|
||||
|
||||
|
||||
|
@@ -2,13 +2,12 @@ import os
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.lazy import LazyInitContext
|
||||
from colossalai.shardformer.layer import GPT2FusedLinearConv1D_Col, GPT2FusedLinearConv1D_Row
|
||||
from colossalai.shardformer.layer import FusedLinear1D_Col, FusedLinear1D_Row
|
||||
from colossalai.shardformer.layer.qkv_fused_linear import split_fused_qkv_in_gpt2_style
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
|
||||
@@ -16,93 +15,55 @@ from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
os.environ["CUDA_DEVICE_MAX_CONNECTIONS"] = "1"
|
||||
|
||||
|
||||
class Conv1D(nn.Module):
|
||||
"""
|
||||
1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
|
||||
|
||||
Basically works like a linear layer but the weights are transposed.
|
||||
|
||||
Args:
|
||||
nf (`int`): The number of output features.
|
||||
nx (`int`): The number of input features.
|
||||
"""
|
||||
|
||||
def __init__(self, nf, nx):
|
||||
super().__init__()
|
||||
self.nf = nf
|
||||
self.weight = nn.Parameter(torch.empty(nx, nf))
|
||||
self.bias = nn.Parameter(torch.zeros(nf))
|
||||
nn.init.normal_(self.weight, std=0.02)
|
||||
|
||||
def forward(self, x):
|
||||
size_out = x.size()[:-1] + (self.nf,)
|
||||
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
|
||||
x = x.view(size_out)
|
||||
return x
|
||||
|
||||
|
||||
def rearrange(tensor: torch.Tensor, dim: int):
|
||||
tensor = tensor.clone()
|
||||
world_size = 2
|
||||
order = torch.arange(world_size * 3)
|
||||
new_order = []
|
||||
for i in range(world_size):
|
||||
new_order.append(order[i::world_size])
|
||||
new_order = torch.cat(new_order)
|
||||
|
||||
tensor_chunks = torch.chunk(tensor, world_size * 3, dim=dim)
|
||||
rearanged_tensor_chunks = [tensor_chunks[i] for i in new_order]
|
||||
rearanged_tensor = torch.cat(rearanged_tensor_chunks, dim=dim)
|
||||
return rearanged_tensor
|
||||
|
||||
|
||||
@parameterize("lazy_init", [False, True])
|
||||
def check_linear_conv_1d_col(lazy_init: bool):
|
||||
def check_linear_1d_col(lazy_init: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
linear = nn.Linear(8, 80).cuda()
|
||||
with ctx:
|
||||
linear_copy = Conv1D(192, 48).cuda()
|
||||
linear_conv_col = GPT2FusedLinearConv1D_Col.from_native_module(
|
||||
linear_copy, process_group=None, gather_output=True, n_fused=3
|
||||
linear_copy = nn.Linear(8, 80).cuda()
|
||||
linear_col = FusedLinear1D_Col.from_native_module(
|
||||
linear_copy, process_group=None, gather_output=True, split_sizes=[32, 32, 16]
|
||||
)
|
||||
|
||||
assert linear.weight.shape == torch.Size([48, 192])
|
||||
assert linear.bias.shape == torch.Size([192])
|
||||
assert linear_conv_col.weight.shape == torch.Size([48, 96])
|
||||
assert linear_conv_col.bias.shape == torch.Size([96])
|
||||
assert linear_copy.weight is linear_conv_col.weight
|
||||
assert linear_copy.bias is linear_conv_col.bias
|
||||
assert linear.weight.shape == torch.Size([80, 8])
|
||||
assert linear.bias.shape == torch.Size([80])
|
||||
assert linear_col.weight.shape == torch.Size([40, 8])
|
||||
assert linear_col.bias.shape == torch.Size([40])
|
||||
assert linear_copy.weight is linear_col.weight
|
||||
assert linear_copy.bias is linear_col.bias
|
||||
|
||||
# ensure weights are reversibly loadable
|
||||
linear_conv_col.load_state_dict(linear.state_dict())
|
||||
linear.load_state_dict(linear_conv_col.state_dict())
|
||||
linear_col.load_state_dict(linear.state_dict())
|
||||
linear.load_state_dict(linear_col.state_dict())
|
||||
|
||||
# check computation correctness
|
||||
x = torch.rand(4, 48).cuda()
|
||||
x = torch.rand(4, 8).cuda()
|
||||
out = linear(x)
|
||||
gather_out = linear_conv_col(x)
|
||||
assert_close(rearrange(out, 1), gather_out)
|
||||
gather_out = linear_col(x)
|
||||
assert_close(out, gather_out)
|
||||
|
||||
# check backward correctness
|
||||
out.sum().backward()
|
||||
gather_out.sum().backward()
|
||||
|
||||
target_grad = split_fused_qkv_in_gpt2_style(linear.weight.grad, 3, None, True)
|
||||
assert_close(target_grad, linear_conv_col.weight.grad)
|
||||
target_grad = split_fused_qkv_in_gpt2_style(linear.weight.grad, [32, 32, 16], None, False)
|
||||
assert_close(target_grad, linear_col.weight.grad)
|
||||
|
||||
|
||||
@parameterize("lazy_init", [False, True])
|
||||
def check_linear_conv_1d_row(lazy_init: bool):
|
||||
def check_linear_1d_row(lazy_init: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
linear = nn.Linear(80, 8).cuda()
|
||||
with ctx:
|
||||
linear_copy = Conv1D(192, 48).cuda()
|
||||
linear_row = GPT2FusedLinearConv1D_Row.from_native_module(linear_copy, process_group=None, parallel_input=False)
|
||||
linear_copy = nn.Linear(80, 8).cuda()
|
||||
linear_row = FusedLinear1D_Row.from_native_module(
|
||||
linear_copy, process_group=None, split_sizes=[32, 32, 16], parallel_input=False
|
||||
)
|
||||
|
||||
assert linear.weight.shape == torch.Size([48, 192])
|
||||
assert linear_row.weight.shape == torch.Size([24, 192])
|
||||
assert linear_row.bias.shape == torch.Size([192])
|
||||
assert linear.weight.shape == torch.Size([8, 80])
|
||||
assert linear_row.weight.shape == torch.Size([8, 40])
|
||||
assert linear_row.bias.shape == torch.Size([8])
|
||||
assert linear_copy.weight is linear_row.weight
|
||||
assert linear_copy.bias is linear_row.bias
|
||||
|
||||
@@ -111,7 +72,7 @@ def check_linear_conv_1d_row(lazy_init: bool):
|
||||
linear.load_state_dict(linear_row.state_dict())
|
||||
|
||||
# check computation correctness
|
||||
x = torch.rand(4, 48).cuda()
|
||||
x = torch.rand(4, 80).cuda()
|
||||
out = linear(x)
|
||||
gather_out = linear_row(x)
|
||||
assert_close(out, gather_out)
|
||||
@@ -120,17 +81,51 @@ def check_linear_conv_1d_row(lazy_init: bool):
|
||||
out.sum().backward()
|
||||
gather_out.sum().backward()
|
||||
|
||||
rank = dist.get_rank()
|
||||
target_grad = torch.chunk(linear.weight.grad, 2, dim=0)[rank]
|
||||
target_grad = split_fused_qkv_in_gpt2_style(linear.weight.grad, [32, 32, 16], None, True)
|
||||
assert_close(target_grad, linear_row.weight.grad)
|
||||
|
||||
|
||||
@parameterize("lazy_init", [False, True])
|
||||
def check_linear_1d_col_row(lazy_init: bool):
|
||||
ctx = LazyInitContext() if lazy_init else nullcontext()
|
||||
|
||||
linear1 = nn.Linear(8, 80).cuda()
|
||||
linear2 = nn.Linear(80, 8).cuda()
|
||||
with ctx:
|
||||
linear1_copy = nn.Linear(8, 80).cuda()
|
||||
linear2_copy = nn.Linear(80, 8).cuda()
|
||||
linear_col = FusedLinear1D_Col.from_native_module(linear1_copy, process_group=None, split_sizes=[32, 32, 16])
|
||||
linear_row = FusedLinear1D_Row.from_native_module(
|
||||
linear2_copy,
|
||||
process_group=None,
|
||||
split_sizes=[32, 32, 16],
|
||||
)
|
||||
# ensure weights are reversibly loadable
|
||||
linear_col.load_state_dict(linear1.state_dict())
|
||||
linear_row.load_state_dict(linear2.state_dict())
|
||||
|
||||
# check computation correctness
|
||||
x = torch.rand(4, 8).cuda()
|
||||
target_out = linear2(linear1(x))
|
||||
out = linear_row(linear_col(x))
|
||||
assert_close(out, target_out)
|
||||
|
||||
# check backward correctness
|
||||
target_out.sum().backward()
|
||||
out.sum().backward()
|
||||
|
||||
target_grad1 = split_fused_qkv_in_gpt2_style(linear1.weight.grad, [32, 32, 16], None, False)
|
||||
assert_close(target_grad1, linear_col.weight.grad)
|
||||
target_grad2 = split_fused_qkv_in_gpt2_style(linear2.weight.grad, [32, 32, 16], None, True)
|
||||
assert_close(target_grad2, linear_row.weight.grad)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
|
||||
# test for linear conv
|
||||
check_linear_conv_1d_col()
|
||||
check_linear_conv_1d_row()
|
||||
check_linear_1d_col()
|
||||
check_linear_1d_row()
|
||||
check_linear_1d_col_row()
|
||||
|
||||
|
||||
@rerun_if_address_is_in_use()
|
||||
|
Reference in New Issue
Block a user