mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-07-03 18:46:43 +00:00
[fix] remove chunk 0 stage 0 bwd b; u don't have to cal micrbatch's dx;
This commit is contained in:
parent
bb0390c90d
commit
64ceea746f
@ -449,7 +449,7 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||||||
model_chunk: Union[ModuleList, Module],
|
model_chunk: Union[ModuleList, Module],
|
||||||
model_chunk_id: int,
|
model_chunk_id: int,
|
||||||
optimizer: OptimizerWrapper,
|
optimizer: OptimizerWrapper,
|
||||||
micro_batch: Optional[dict],
|
# micro_batch: Optional[dict],
|
||||||
input_obj: Optional[dict],
|
input_obj: Optional[dict],
|
||||||
output_obj: Union[dict, torch.Tensor],
|
output_obj: Union[dict, torch.Tensor],
|
||||||
output_obj_grad: Optional[dict],
|
output_obj_grad: Optional[dict],
|
||||||
@ -480,9 +480,10 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||||||
|
|
||||||
# For chunk 0 stage 0, use micro_batch as input_obj_
|
# For chunk 0 stage 0, use micro_batch as input_obj_
|
||||||
if model_chunk_id == 0 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
if model_chunk_id == 0 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||||
input_obj_, _ = tree_flatten(micro_batch)
|
# input_obj_, _ = tree_flatten(micro_batch)
|
||||||
output_obj_, _ = tree_flatten(output_obj) # y
|
# output_obj_, _ = tree_flatten(output_obj) # y
|
||||||
output_obj_grad_, _ = tree_flatten(output_obj_grad) # dy
|
# output_obj_grad_, _ = tree_flatten(output_obj_grad) # dy
|
||||||
|
return None
|
||||||
|
|
||||||
# For loss backward; output_obj is loss; output_obj_grad should be None
|
# For loss backward; output_obj is loss; output_obj_grad should be None
|
||||||
elif model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
elif model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||||
@ -512,9 +513,10 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||||||
# Format output_obj_grad
|
# Format output_obj_grad
|
||||||
input_obj_grad = {}
|
input_obj_grad = {}
|
||||||
if model_chunk_id == 0 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
if model_chunk_id == 0 and self.stage_manager.is_first_stage(ignore_chunk=True):
|
||||||
for k, v in micro_batch.items():
|
# for k, v in micro_batch.items():
|
||||||
if isinstance(v, torch.Tensor) and v.grad is not None:
|
# if isinstance(v, torch.Tensor) and v.grad is not None:
|
||||||
input_obj_grad[k] = v.grad
|
# input_obj_grad[k] = v.grad
|
||||||
|
pass
|
||||||
else:
|
else:
|
||||||
for k, v in input_obj.items():
|
for k, v in input_obj.items():
|
||||||
if isinstance(v, torch.Tensor) and v.grad is not None:
|
if isinstance(v, torch.Tensor) and v.grad is not None:
|
||||||
@ -643,7 +645,8 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||||||
tree_map(release_tensor_data, output_obj)
|
tree_map(release_tensor_data, output_obj)
|
||||||
|
|
||||||
# add input and output object for backward b
|
# add input and output object for backward b
|
||||||
self.input_tensors[model_chunk_id].append((micro_batch, input_obj))
|
# self.input_tensors[model_chunk_id].append((micro_batch, input_obj))
|
||||||
|
self.input_tensors[model_chunk_id].append(input_obj)
|
||||||
|
|
||||||
# for bwd b&w, we only need the graph(grad_fn) of output_obj
|
# for bwd b&w, we only need the graph(grad_fn) of output_obj
|
||||||
# Do not release_tensor_data loss, release_tensor_data other output_obj;
|
# Do not release_tensor_data loss, release_tensor_data other output_obj;
|
||||||
@ -701,7 +704,8 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||||||
output_tensor_grad = self.recv_backward_buffer[model_chunk_id].pop(0)
|
output_tensor_grad = self.recv_backward_buffer[model_chunk_id].pop(0)
|
||||||
|
|
||||||
# get input and output object from buffer;
|
# get input and output object from buffer;
|
||||||
micro_batch, input_obj = self.input_tensors[model_chunk_id].pop(0)
|
# micro_batch, input_obj = self.input_tensors[model_chunk_id].pop(0)
|
||||||
|
input_obj = self.input_tensors[model_chunk_id].pop(0)
|
||||||
output_obj = self.output_tensors[model_chunk_id].pop(0)
|
output_obj = self.output_tensors[model_chunk_id].pop(0)
|
||||||
|
|
||||||
# save output_tensor_grad for dw
|
# save output_tensor_grad for dw
|
||||||
@ -717,7 +721,6 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||||||
model_chunk=model_chunk,
|
model_chunk=model_chunk,
|
||||||
model_chunk_id=model_chunk_id,
|
model_chunk_id=model_chunk_id,
|
||||||
optimizer=optimizer,
|
optimizer=optimizer,
|
||||||
micro_batch=micro_batch,
|
|
||||||
input_obj=input_obj,
|
input_obj=input_obj,
|
||||||
output_obj=output_obj,
|
output_obj=output_obj,
|
||||||
output_obj_grad=output_tensor_grad,
|
output_obj_grad=output_tensor_grad,
|
||||||
@ -838,6 +841,7 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
|
|||||||
|
|
||||||
# while we still have schedules_node in self.schedules
|
# while we still have schedules_node in self.schedules
|
||||||
schedule = self.schedules[self.stage_manager.stage] # get schedule by stage (rank)
|
schedule = self.schedules[self.stage_manager.stage] # get schedule by stage (rank)
|
||||||
|
print(f"schedule {schedule}")
|
||||||
for it in range(len(schedule)):
|
for it in range(len(schedule)):
|
||||||
scheduled_node = schedule[it]
|
scheduled_node = schedule[it]
|
||||||
if scheduled_node.type in AUTO_SCHEDULE_COMMUNICATION_TYPES:
|
if scheduled_node.type in AUTO_SCHEDULE_COMMUNICATION_TYPES:
|
||||||
|
Loading…
Reference in New Issue
Block a user