mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-06 11:32:10 +00:00
[pipeline] set optimizer to optional in execute_pipeline (#4630)
* set optimizer to optional in execute_pipeline * arrange device and mixed precision in booster init * fix execute_pipeline in booster.py
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Callable, Iterable
|
||||
from typing import Any, Callable, Iterable, Optional
|
||||
|
||||
from torch import Tensor
|
||||
from torch.nn import Module
|
||||
@@ -14,18 +14,18 @@ class PipelineSchedule:
|
||||
|
||||
def forward_backward_step(self,
|
||||
model: Module,
|
||||
optimizer: OptimizerWrapper,
|
||||
data_iter: Iterable,
|
||||
criterion: Callable[[Any, Any], Tensor],
|
||||
optimizer: Optional[OptimizerWrapper] = None,
|
||||
return_loss: bool = False,
|
||||
return_outputs: bool = False) -> dict:
|
||||
"""Forward and backward step for pipeline training.
|
||||
|
||||
Args:
|
||||
model (Module): Model to be trained.
|
||||
optimizer (OptimizerWrapper): Optimizer to be used.
|
||||
data_iter (Iterable): Data iterator.
|
||||
criterion (Callable[[Any, Any], Tensor]): Criterion to be used. It should take two arguments: model outputs and inputs, and returns loss tensor.
|
||||
optimizer (OptimizerWrapper, optional): Optimizer to be used. Can be None when only forward is executed. Defaults to None.
|
||||
return_loss (bool, optional): Whether to return loss. Defaults to False. Whether to return loss.
|
||||
return_outputs (bool, optional): Whether to return model outputs. Defaults to False. Whether to return model outputs.
|
||||
|
||||
|
Reference in New Issue
Block a user