[tensor] design DistSpec and DistSpecManager for ColoTensor (#934)

* add dist spec

* update linear op

* polish code

* polish code

* update embedding op

* polish unit tests

* polish unit tests

* polish comments

* polish code

* add test_dist_spec_mgr

* polish code

* refactor folder structure

* polish unit tests

* add get_process_group() for TensorSpec

* polish code
This commit is contained in:
ver217
2022-05-13 15:13:52 +08:00
committed by GitHub
parent 830d3bca26
commit 67c33f57eb
15 changed files with 436 additions and 466 deletions

View File

@@ -1,13 +1,16 @@
from .op_wrapper import _COLOSSAL_OPS
from copy import copy
import torch
from typing import Tuple, Optional, Callable, Union
from numpy import product
from colossalai.core import global_context as gpc
from colossalai.nn.layer.utils import divide
from colossalai.tensor import TensorSpec, ComputePattern, ShardPattern
from colossalai.tensor import TensorSpec, ComputePattern
from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, gather_forward_split_backward
from .const import TensorType
from colossalai.tensor import dist_spec
from colossalai.tensor.dist_spec_mgr import DistSpecManager
from colossalai.tensor.dist_spec import _DistSpec
class ColoTensor(object):
@@ -28,15 +31,14 @@ class ColoTensor(object):
pin_memory=False,
device=None,
torch_tensor=torch.empty(0),
shard_spec: TensorSpec = TensorSpec()):
spec: TensorSpec = TensorSpec(dist_spec.replicate())):
self._size = size
self._dtype = dtype
self._requires_grad = requires_grad
self._pin_memory = pin_memory
self._device = device
self._torch_tensor = torch_tensor
self._shard_spec = shard_spec
self._shard_pattern = ShardPattern.NA
self._spec = copy(spec)
self._type = TensorType.NONMODEL
self._graph_node = None
@@ -44,8 +46,8 @@ class ColoTensor(object):
return ColoTensor.init_from_torch_tensor(self.torch_tensor()[key])
@property
def shard_spec(self) -> TensorSpec:
return self._shard_spec
def spec(self) -> TensorSpec:
return self._spec
@property
def shard_pattern(self):
@@ -96,13 +98,16 @@ class ColoTensor(object):
return product(self._size)
@staticmethod
def init_from_torch_tensor(tensor: torch.Tensor, save_payload=True) -> 'ColoTensor':
def init_from_torch_tensor(tensor: torch.Tensor,
save_payload=True,
spec: TensorSpec = TensorSpec(dist_spec.replicate())) -> 'ColoTensor':
colo_t = ColoTensor(*tensor.size(),
dtype=tensor.dtype,
requires_grad=tensor.requires_grad,
pin_memory=tensor.is_pinned(),
device=tensor.device,
torch_tensor=tensor if save_payload else torch.empty(0))
torch_tensor=tensor if save_payload else torch.empty(0),
spec=spec)
return colo_t
def del_torch_tensor(self, save_shape=False) -> None:
@@ -127,85 +132,17 @@ class ColoTensor(object):
device=self._device)
return self._torch_tensor
def set_spec(self, spec: TensorSpec, shard: bool = True) -> None:
self._shard_spec = spec
if shard == True:
self.shard()
def set_shard_pattern(self, shard_pattern: ShardPattern):
self._shard_pattern = shard_pattern
def shard(self):
assert self._shard_spec is not None, 'You should call set_spec() before _shard() ColoTensor.'
if self._shard_pattern is not ShardPattern.NA: # reshard
self.gather()
# Model Parameters
if self._shard_spec.num_action == 1:
parallel_action = self._shard_spec.get_action_by_compute_pattern(self._shard_spec.compute_patterns[0])
if parallel_action.compute_pattern in [
ComputePattern.TP1DRow_Linear, ComputePattern.TP1DCol_Embedding, ComputePattern.TP1DCol_mm
]:
self._shard_1d(parallel_action=parallel_action, dim=-1)
# We bind our ComputePattern on weight, which has to be transposed when linear().
self._shard_pattern = ShardPattern.Col
elif parallel_action.compute_pattern in [
ComputePattern.TP1DCol_Linear, ComputePattern.TP1DRow_Embedding, ComputePattern.TP1DRow_mm
]:
self._shard_1d(parallel_action=parallel_action, dim=0)
self._shard_pattern = ShardPattern.Row
else:
raise NotImplementedError
def gather(self):
assert not self.is_model_data(), 'Currently we only support gather Activation ColoTensor.'
assert not self.is_gathered(), 'Only sharded ColoTensor can be gathered.'
parallel_action = self._shard_spec.get_action_by_compute_pattern(ComputePattern.DP)
dim = self._get_gather_dim()
self._torch_tensor = gather_forward_split_backward(self._torch_tensor, parallel_action.parallel_mode, dim=dim)
self._shard_pattern = ShardPattern.NA
self._size = self._torch_tensor.size()
def global_torch_tensor(self) -> torch.Tensor:
out_tensor = self.torch_tensor()
if self.is_gathered():
return out_tensor
parallel_action = self._shard_spec.get_action_by_compute_pattern(ComputePattern.DP)
world_size = gpc.get_world_size(parallel_action.parallel_mode)
if world_size == 1:
return out_tensor
rank = gpc.get_local_rank(parallel_action.parallel_mode)
tensor_list = [torch.empty_like(out_tensor) for _ in range(world_size)]
tensor_list[rank] = out_tensor
torch.distributed.all_gather(tensor_list, out_tensor, group=gpc.get_group(parallel_action.parallel_mode))
dim = self._get_gather_dim()
out_tensor = torch.cat(tensor_list, dim=dim).contiguous()
return out_tensor
def is_gathered(self) -> bool:
return self._shard_pattern == ShardPattern.NA
def set_spec(self, spec: TensorSpec) -> None:
spec = copy(spec)
self.to_dist_spec(spec.dist_spec)
self._spec = spec
def has_spec(self) -> bool:
return self._shard_spec is not None and self._shard_spec.num_action > 0
return self._spec.num_action > 0
def is_model_data(self) -> bool:
return self._type == TensorType.MODEL
def _shard_1d(self, parallel_action, dim=-1):
num_partition = gpc.get_world_size(parallel_action.parallel_mode)
local_rank = gpc.get_local_rank(parallel_action.parallel_mode)
chunk_size = divide(self._size[dim], num_partition)
# Reshape to get shard for this rank and we don't want autograd
# recording here for the narrow op and 'local_shard' should be a
# leaf variable in the autograd graph.
self._torch_tensor = self._torch_tensor.narrow(dim, local_rank * chunk_size, chunk_size).detach().contiguous(
) # TODO Shall we clone() here since detach() will point to the old tensor?
self._torch_tensor.requires_grad = self._requires_grad
self._size = self._torch_tensor.size()
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
global _COLOSSAL_OPS
@@ -278,15 +215,6 @@ class ColoTensor(object):
for output in outputs
])
def _get_gather_dim(self):
if self._shard_pattern == ShardPattern.Row:
dim = 0
elif self._shard_pattern == ShardPattern.Col:
dim = -1
else:
raise NotImplementedError
return dim
def __mul__(self, other) -> "ColoTensor":
if isinstance(other, ColoTensor):
return ColoTensor.init_from_torch_tensor(self.torch_tensor() * other.torch_tensor())
@@ -296,3 +224,10 @@ class ColoTensor(object):
raise TypeError(f'{type(other)} is not supported in ColoTensor __mul__')
__rmul__ = __mul__
def to_dist_spec(self, dist_spec: _DistSpec) -> None:
self._torch_tensor = DistSpecManager.handle_trans_spec(self.torch_tensor(), self.spec.dist_spec, dist_spec)
if self._torch_tensor.is_leaf:
self._torch_tensor.requires_grad = self._requires_grad
self._size = self._torch_tensor.size()
self._spec.dist_spec = dist_spec