mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-17 07:00:37 +00:00
[refactor] moving grad acc logic to engine (#804)
This commit is contained in:
99
tests/test_engine/test_gradient_accumluation.py
Normal file
99
tests/test_engine/test_gradient_accumluation.py
Normal file
@@ -0,0 +1,99 @@
|
||||
import os
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
|
||||
import colossalai
|
||||
from colossalai.testing.utils import rerun_if_address_is_in_use
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.utils import free_port, get_dataloader
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from torch.optim import Adam
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import CIFAR10
|
||||
from torchvision.models import resnet18
|
||||
|
||||
# Config
|
||||
BATCH_SIZE = 2
|
||||
NUM_CLASSES = 10
|
||||
|
||||
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)),
|
||||
clip_grad_norm=1.0,
|
||||
gradient_accumulation=4)
|
||||
|
||||
|
||||
def run_no_pipeline(rank, world_size, port):
|
||||
|
||||
# init dist env
|
||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
||||
# build model
|
||||
model = resnet18(num_classes=10)
|
||||
|
||||
# build dataloaders
|
||||
train_dataset = CIFAR10(root=Path(os.environ['DATA']),
|
||||
download=True,
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
||||
]))
|
||||
train_dataloader = get_dataloader(dataset=train_dataset,
|
||||
shuffle=True,
|
||||
batch_size=BATCH_SIZE,
|
||||
pin_memory=True,
|
||||
drop_last=True)
|
||||
|
||||
# build optimizer
|
||||
optimizer = Adam(model.parameters(), lr=0.001)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
|
||||
engine, train_dataloader, *args = colossalai.initialize(model=model,
|
||||
optimizer=optimizer,
|
||||
criterion=criterion,
|
||||
train_dataloader=train_dataloader)
|
||||
logger = get_dist_logger()
|
||||
rank = torch.distributed.get_rank()
|
||||
param_track = []
|
||||
grad_track = []
|
||||
next(model.parameters()).retain_grad()
|
||||
|
||||
engine.train()
|
||||
step = 0
|
||||
for img, label in train_dataloader:
|
||||
engine.zero_grad()
|
||||
img = img.cuda()
|
||||
label = label.cuda()
|
||||
output = engine(img)
|
||||
loss = engine.criterion(output, label)
|
||||
engine.backward(loss)
|
||||
engine.step()
|
||||
|
||||
# check
|
||||
param_track.append(next(model.parameters())[0].clone())
|
||||
grad_track.append(next(model.parameters()).grad[0].clone())
|
||||
step += 1
|
||||
if step == CONFIG['gradient_accumulation']:
|
||||
break
|
||||
|
||||
assert not torch.all(grad_track[0] == grad_track[-1]), 'grad should be different in different iterations'
|
||||
assert torch.all(param_track[0] == param_track[1]) and not torch.all(param_track[0] == param_track[-1]), \
|
||||
'param should be the same in the first few iterations and only changed in the last iteration'
|
||||
|
||||
gpc.destroy()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_engine():
|
||||
world_size = 4
|
||||
func = partial(run_no_pipeline, world_size=world_size, port=free_port())
|
||||
mp.spawn(func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_engine()
|
Reference in New Issue
Block a user