diff --git a/README.md b/README.md
index 3098d72b4..77c3471d9 100644
--- a/README.md
+++ b/README.md
@@ -66,7 +66,7 @@
Colossal-AI for Real World Applications
@@ -214,22 +214,31 @@ Please visit our [documentation](https://www.colossalai.org/) and [examples](htt
(back to top)
## Colossal-AI in the Real World
-### ChatGPT
-A low-cost [ChatGPT](https://openai.com/blog/chatgpt/) equivalent implementation process. [[code]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/ChatGPT) [[blog]](https://www.hpc-ai.tech/blog/colossal-ai-chatgpt)
-
+
+### ColossalChat
+
+
+
+[ColossalChat](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat): An open-source solution for cloning [ChatGPT](https://openai.com/blog/chatgpt/) with a complete RLHF pipeline. [[code]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat) [[blog]](https://www.hpc-ai.tech/blog/colossal-ai-chatgpt) [[demo]](https://chat.colossalai.org)
+
+
- Up to 7.73 times faster for single server training and 1.42 times faster for single-GPU inference
-
+
- Up to 10.3x growth in model capacity on one GPU
- A mini demo training process requires only 1.62GB of GPU memory (any consumer-grade GPU)
-
+
diff --git a/docs/README-zh-Hans.md b/docs/README-zh-Hans.md
index 81c45abfd..4be923eca 100644
--- a/docs/README-zh-Hans.md
+++ b/docs/README-zh-Hans.md
@@ -66,7 +66,7 @@
Colossal-AI 成功案例
@@ -212,22 +212,30 @@ Colossal-AI 为您提供了一系列并行组件。我们的目标是让您的
(返回顶端)
## Colossal-AI 成功案例
-### ChatGPT
-低成本复现[ChatGPT](https://openai.com/blog/chatgpt/)完整流程 [[代码]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/ChatGPT) [[博客]](https://www.hpc-ai.tech/blog/colossal-ai-chatgpt)
-
+### ColossalChat
+
+
+
+[ColossalChat](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat): 完整RLHF流程0门槛克隆 [ChatGPT](https://openai.com/blog/chatgpt/) [[代码]](https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat) [[博客]](https://www.hpc-ai.tech/blog/colossal-ai-chatgpt) [[在线样例]](https://chat.colossalai.org)
+
+
- 最高可提升单机训练速度7.73倍,单卡推理速度1.42倍
-
+
- 单卡模型容量最多提升10.3倍
- 最小demo训练流程最低仅需1.62GB显存 (任意消费级GPU)
-
+