mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
updated flash attention api
This commit is contained in:
@@ -6,7 +6,11 @@ from colossalai.kernel.cuda_native.flash_attention import HAS_FLASH_ATTN, HAS_TR
|
||||
|
||||
if HAS_FLASH_ATTN:
|
||||
from colossalai.kernel.cuda_native.flash_attention import (
|
||||
flash_attention_q_k_v, flash_attention_q_kv, flash_attention_qkv)
|
||||
MaskedFlashAttention,
|
||||
flash_attention_q_k_v,
|
||||
flash_attention_q_kv,
|
||||
flash_attention_qkv,
|
||||
)
|
||||
|
||||
if HAS_TRITON:
|
||||
from colossalai.kernel.cuda_native.flash_attention import triton_flash_attention
|
||||
@@ -87,17 +91,17 @@ def test_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
|
||||
if i == 0:
|
||||
tri_dq, tri_dk, tri_dv, = torch.autograd.grad(tri_out, (q, k, v), dout)
|
||||
tri_out, tri_dq, tri_dk, tri_dv = map(lambda x: rearrange(x, '(z n) h d -> z h n d', z=Z),
|
||||
(tri_out, tri_dq, tri_dk, tri_dv))
|
||||
(tri_out, tri_dq, tri_dk, tri_dv))
|
||||
elif i == 1:
|
||||
tri_dq, tri_dkv, = torch.autograd.grad(tri_out, (q, kv), dout)
|
||||
tri_dk, tri_dv = torch.chunk(tri_dkv, 2, dim=1)
|
||||
tri_out, tri_dq, tri_dk, tri_dv = map(lambda x: rearrange(x, '(z n) h d -> z h n d', z=Z),
|
||||
(tri_out, tri_dq, tri_dk.squeeze(1), tri_dv.squeeze(1)))
|
||||
(tri_out, tri_dq, tri_dk.squeeze(1), tri_dv.squeeze(1)))
|
||||
else:
|
||||
tri_dqkv, = torch.autograd.grad(tri_out, (qkv), dout)
|
||||
tri_dq, tri_dk, tri_dv = torch.chunk(tri_dqkv, 3, dim=1)
|
||||
tri_out, tri_dq, tri_dk, tri_dv = map(lambda x: rearrange(x, '(z n) h d -> z h n d', z=Z),
|
||||
(tri_out, tri_dq.squeeze(1), tri_dk.squeeze(1), tri_dv.squeeze(1)))
|
||||
(tri_out, tri_dq.squeeze(1), tri_dk.squeeze(1), tri_dv.squeeze(1)))
|
||||
|
||||
# compare
|
||||
assert torch.allclose(ref_out, tri_out, atol=1e-3)
|
||||
@@ -106,5 +110,19 @@ def test_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
|
||||
assert torch.allclose(ref_dq, tri_dq, atol=1e-3)
|
||||
|
||||
|
||||
@pytest.mark.skipif(HAS_FLASH_ATTN == False, reason="flash is not available")
|
||||
@pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(3, 4, 2, 16)])
|
||||
def test_masked_flash_attention(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
|
||||
attn = MaskedFlashAttention(N_CTX, D_HEAD, 0.1)
|
||||
|
||||
qkv = torch.randn((Z, H, 3 * N_CTX * D_HEAD), dtype=dtype, device="cuda").normal_(mean=0, std=.5).requires_grad_()
|
||||
attention_mask = torch.randint(2, (Z, H)).cuda().bool()
|
||||
|
||||
out = attn(qkv, attention_mask)
|
||||
|
||||
dout = torch.rand_like(out)
|
||||
out.backward(dout)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_flash_attention(3, 4, 2, 16)
|
||||
|
Reference in New Issue
Block a user