[cuda] modify the fused adam, support hybrid of fp16 and fp32 (#497)

This commit is contained in:
LuGY
2022-03-25 14:15:53 +08:00
committed by GitHub
parent 920c5889a7
commit 6a3f9fda83
6 changed files with 253 additions and 143 deletions

View File

@@ -22,7 +22,7 @@ typedef enum
using MATH_T = float;
template <typename T>
template <typename T_g, typename T_p>
struct AdamFunctor
{
__device__ __forceinline__ void operator()(
@@ -50,16 +50,16 @@ struct AdamFunctor
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.sizes[tensor_loc];
T *g = (T *)tl.addresses[0][tensor_loc];
T_g *g = (T_g *)tl.addresses[0][tensor_loc];
g += chunk_idx * chunk_size;
T *p = (T *)tl.addresses[1][tensor_loc];
T_p *p = (T_p *)tl.addresses[1][tensor_loc];
p += chunk_idx * chunk_size;
T *m = (T *)tl.addresses[2][tensor_loc];
T_p *m = (T_p *)tl.addresses[2][tensor_loc];
m += chunk_idx * chunk_size;
T *v = (T *)tl.addresses[3][tensor_loc];
T_p *v = (T_p *)tl.addresses[3][tensor_loc];
v += chunk_idx * chunk_size;
n -= chunk_idx * chunk_size;
@@ -155,15 +155,15 @@ void multi_tensor_adam_cuda(
bias_correction2 = 1 - std::pow(beta2, step);
}
// Assume single type across p,g,m1,m2 now
DISPATCH_DOUBLE_FLOAT_AND_HALF(
tensor_lists[0][0].scalar_type(), 0, "adam",
DISPATCH_FLOAT_AND_HALF_FOR_G_P(
tensor_lists[0][0].scalar_type(),
tensor_lists[1][0].scalar_type(), 0, "adam",
multi_tensor_apply<4>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
AdamFunctor<scalar_t_0>(),
AdamFunctor<g_scalar_t_0, p_scalar_t_0>(),
beta1,
beta2,
bias_correction1,

View File

@@ -173,6 +173,36 @@
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
#define DISPATCH_FLOAT_AND_HALF_FOR_G_P(GTYPE, PTYPE, LEVEL, NAME, ...) \
if (GTYPE == at::ScalarType::Float && PTYPE == at::ScalarType::Float) \
{ \
using g_scalar_t_##LEVEL = float; \
using p_scalar_t_##LEVEL = float; \
__VA_ARGS__; \
} \
else if (GTYPE == at::ScalarType::Float && PTYPE == at::ScalarType::Half) \
{ \
using g_scalar_t_##LEVEL = float; \
using p_scalar_t_##LEVEL = at::Half; \
__VA_ARGS__; \
} \
else if (GTYPE == at::ScalarType::Half && PTYPE == at::ScalarType::Float) \
{ \
using g_scalar_t_##LEVEL = at::Half; \
using p_scalar_t_##LEVEL = float; \
__VA_ARGS__; \
} \
else if (GTYPE == at::ScalarType::Half && PTYPE == at::ScalarType::Half) \
{ \
using g_scalar_t_##LEVEL = at::Half; \
using p_scalar_t_##LEVEL = at::Half; \
__VA_ARGS__; \
} \
else \
{ \
AT_ERROR(#NAME, "not implemented for '", toString(GTYPE), toString(PTYPE), "'"); \
} \
template <typename T>
__device__ __forceinline__ T reduce_block_into_lanes(T *x,
T val,

View File

@@ -10,7 +10,7 @@ class FusedAdam(torch.optim.Optimizer):
"""Implements Adam algorithm.
Currently GPU-only. Requires ColossalAI to be installed via
``pip install -v --no-cache-dir --global-option="--cuda_ext" ./``.
``pip install .``.
This version of fused Adam implements 2 fusions.
@@ -18,7 +18,7 @@ class FusedAdam(torch.optim.Optimizer):
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
:class:`colossalai.nn.optimizer.FusedAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
or ``torch.optim.Adam`` with ``adam_w_mode=False``
or ``torch.optim.Adam`` with ``adamw_mode=False``
:class:`colossalai.nn.optimizer.FusedAdam` may be used with or without Amp.
@@ -36,7 +36,7 @@ class FusedAdam(torch.optim.Optimizer):
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False) NOT SUPPORTED in FusedAdam!
adam_w_mode (boolean, optional): Apply L2 regularization or weight decay
adamw_mode (boolean, optional): Apply L2 regularization or weight decay
True for decoupled weight decay(also known as AdamW) (default: True)
set_grad_none (bool, optional): whether set grad to None when zero_grad()
method is called. (default: True)
@@ -53,7 +53,7 @@ class FusedAdam(torch.optim.Optimizer):
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
adam_w_mode=True,
adamw_mode=True,
weight_decay=0.,
amsgrad=False,
set_grad_none=True):
@@ -62,7 +62,7 @@ class FusedAdam(torch.optim.Optimizer):
raise RuntimeError('FusedAdam does not support the AMSGrad variant.')
defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay)
super(FusedAdam, self).__init__(params, defaults)
self.adam_w_mode = 1 if adam_w_mode else 0
self.adamw_mode = 1 if adamw_mode else 0
self.set_grad_none = set_grad_none
if multi_tensor_applier.available:
import colossal_C
@@ -109,8 +109,7 @@ class FusedAdam(torch.optim.Optimizer):
group['step'] = 1
# create lists for multi-tensor apply
g_16, p_16, m_16, v_16 = [], [], [], []
g_32, p_32, m_32, v_32 = [], [], [], []
g_l, p_l, m_l, v_l = [], [], [], []
for p in group['params']:
if p.grad is None:
@@ -127,26 +126,16 @@ class FusedAdam(torch.optim.Optimizer):
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if p.dtype == torch.float16:
g_16.append(p.grad.data)
p_16.append(p.data)
m_16.append(state['exp_avg'])
v_16.append(state['exp_avg_sq'])
elif p.dtype == torch.float32:
g_32.append(p.grad.data)
p_32.append(p.data)
m_32.append(state['exp_avg'])
v_32.append(state['exp_avg_sq'])
else:
if p.dtype not in [torch.float16, torch.float32]:
raise RuntimeError('FusedAdam only support fp16 and fp32.')
g_l.append(p.grad.data)
p_l.append(p.data)
m_l.append(state['exp_avg'])
v_l.append(state['exp_avg_sq'])
if (len(g_16) > 0):
multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16],
group['lr'], beta1, beta2, group['eps'], group['step'], self.adam_w_mode,
bias_correction, group['weight_decay'])
if (len(g_32) > 0):
multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32],
group['lr'], beta1, beta2, group['eps'], group['step'], self.adam_w_mode,
bias_correction, group['weight_decay'])
multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_l, p_l, m_l, v_l],
group['lr'], beta1, beta2, group['eps'], group['step'], self.adamw_mode,
bias_correction, group['weight_decay'])
return loss