mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 10:06:44 +00:00
[test] add mixtral transformer test
This commit is contained in:
@@ -3,28 +3,16 @@ from .bert import *
|
||||
from .blip2 import *
|
||||
from .bloom import *
|
||||
from .chatglm2 import *
|
||||
from .command import *
|
||||
from .falcon import *
|
||||
from .gpt import *
|
||||
from .gptj import *
|
||||
from .llama import *
|
||||
from .mistral import *
|
||||
from .mixtral import *
|
||||
from .opt import *
|
||||
from .qwen2 import *
|
||||
from .sam import *
|
||||
from .t5 import *
|
||||
from .vit import *
|
||||
from .whisper import *
|
||||
|
||||
try:
|
||||
from .mistral import *
|
||||
except ImportError:
|
||||
print("This version of transformers doesn't support mistral.")
|
||||
|
||||
try:
|
||||
from .qwen2 import *
|
||||
except ImportError:
|
||||
print("This version of transformers doesn't support qwen2.")
|
||||
|
||||
|
||||
try:
|
||||
from .command import *
|
||||
except ImportError:
|
||||
print("This version of transformers doesn't support Command-R.")
|
||||
|
82
tests/kit/model_zoo/transformers/mixtral.py
Normal file
82
tests/kit/model_zoo/transformers/mixtral.py
Normal file
@@ -0,0 +1,82 @@
|
||||
# modified from tests/kit/model_zoo/transformers/mistral.py
|
||||
import torch
|
||||
import transformers
|
||||
from transformers import MixtralConfig
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence Mixtral
|
||||
# ===============================
|
||||
|
||||
|
||||
def data_gen():
|
||||
# Generated from following code snippet
|
||||
#
|
||||
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
# tokenizer = AutoTokenizer.from_pretrained("mixtralai/Mixtral-7B-v0.1")
|
||||
# input = 'My favourite condiment is vinegar' (last two words repeated to satisfy length requirement)
|
||||
# tokenized_input = tokenizer([input], return_tensors="pt")
|
||||
# input_ids = tokenized_input['input_ids']
|
||||
# attention_mask = tokenized_input['attention_mask']
|
||||
input_ids = torch.tensor([[1, 1984, 16020, 2076, 2487, 349, 21375, 4749]], dtype=torch.int64)
|
||||
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
||||
|
||||
|
||||
def data_gen_for_lm():
|
||||
# LM data gen
|
||||
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
|
||||
data = data_gen()
|
||||
data["labels"] = data["input_ids"].clone()
|
||||
return data
|
||||
|
||||
|
||||
def data_gen_for_sequence_classification():
|
||||
# sequence classification data gen
|
||||
data = data_gen()
|
||||
data["labels"] = torch.tensor([1], dtype=torch.int64)
|
||||
return data
|
||||
|
||||
|
||||
# define output transform function
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
# define loss function
|
||||
loss_fn_for_mixtral_model = lambda x: torch.nn.functional.mse_loss(
|
||||
x.last_hidden_state, torch.ones_like(x.last_hidden_state)
|
||||
)
|
||||
loss_fn = lambda x: x.loss
|
||||
loss_fn_for_seq_classification = lambda output: output.logits.mean()
|
||||
|
||||
config = MixtralConfig(
|
||||
hidden_size=256, intermediate_size=256, num_attention_heads=64, num_hidden_layers=2, vocab_size=50258
|
||||
)
|
||||
|
||||
if hasattr(config, "pad_token_id"):
|
||||
config.pad_token_id = config.eos_token_id
|
||||
|
||||
model_zoo.register(
|
||||
name="transformers_mixtral",
|
||||
model_fn=lambda: transformers.MixtralModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_mixtral_model,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_mixtral_for_casual_lm",
|
||||
model_fn=lambda: transformers.MixtralForCausalLM(config),
|
||||
data_gen_fn=data_gen_for_lm,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_mixtral_for_sequence_classification",
|
||||
model_fn=lambda: transformers.MixtralForSequenceClassification(config),
|
||||
data_gen_fn=data_gen_for_sequence_classification,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_seq_classification,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
Reference in New Issue
Block a user