[test] add mixtral transformer test

This commit is contained in:
hxwang
2024-07-02 09:08:41 +00:00
parent 229db4bc16
commit 6a9164a477
6 changed files with 281 additions and 30 deletions

View File

@@ -3,28 +3,16 @@ from .bert import *
from .blip2 import *
from .bloom import *
from .chatglm2 import *
from .command import *
from .falcon import *
from .gpt import *
from .gptj import *
from .llama import *
from .mistral import *
from .mixtral import *
from .opt import *
from .qwen2 import *
from .sam import *
from .t5 import *
from .vit import *
from .whisper import *
try:
from .mistral import *
except ImportError:
print("This version of transformers doesn't support mistral.")
try:
from .qwen2 import *
except ImportError:
print("This version of transformers doesn't support qwen2.")
try:
from .command import *
except ImportError:
print("This version of transformers doesn't support Command-R.")

View File

@@ -0,0 +1,82 @@
# modified from tests/kit/model_zoo/transformers/mistral.py
import torch
import transformers
from transformers import MixtralConfig
from ..registry import ModelAttribute, model_zoo
# ===============================
# Register single-sentence Mixtral
# ===============================
def data_gen():
# Generated from following code snippet
#
# from transformers import AutoModelForCausalLM, AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained("mixtralai/Mixtral-7B-v0.1")
# input = 'My favourite condiment is vinegar' (last two words repeated to satisfy length requirement)
# tokenized_input = tokenizer([input], return_tensors="pt")
# input_ids = tokenized_input['input_ids']
# attention_mask = tokenized_input['attention_mask']
input_ids = torch.tensor([[1, 1984, 16020, 2076, 2487, 349, 21375, 4749]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def data_gen_for_lm():
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen()
data["labels"] = data["input_ids"].clone()
return data
def data_gen_for_sequence_classification():
# sequence classification data gen
data = data_gen()
data["labels"] = torch.tensor([1], dtype=torch.int64)
return data
# define output transform function
output_transform_fn = lambda x: x
# define loss function
loss_fn_for_mixtral_model = lambda x: torch.nn.functional.mse_loss(
x.last_hidden_state, torch.ones_like(x.last_hidden_state)
)
loss_fn = lambda x: x.loss
loss_fn_for_seq_classification = lambda output: output.logits.mean()
config = MixtralConfig(
hidden_size=256, intermediate_size=256, num_attention_heads=64, num_hidden_layers=2, vocab_size=50258
)
if hasattr(config, "pad_token_id"):
config.pad_token_id = config.eos_token_id
model_zoo.register(
name="transformers_mixtral",
model_fn=lambda: transformers.MixtralModel(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_mixtral_model,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_mixtral_for_casual_lm",
model_fn=lambda: transformers.MixtralForCausalLM(config),
data_gen_fn=data_gen_for_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_mixtral_for_sequence_classification",
model_fn=lambda: transformers.MixtralForSequenceClassification(config),
data_gen_fn=data_gen_for_sequence_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_seq_classification,
model_attribute=ModelAttribute(has_control_flow=True),
)