mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-13 21:22:49 +00:00
[booster] torch fsdp fix ckpt (#3788)
This commit is contained in:
@@ -1,10 +1,6 @@
|
||||
from contextlib import nullcontext
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from packaging import version
|
||||
from torch import nn
|
||||
from torch.optim import SGD
|
||||
|
||||
import colossalai
|
||||
@@ -19,6 +15,7 @@ from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
|
||||
# test baisc fsdp function
|
||||
def run_fn(model_fn, data_gen_fn, output_transform_fn):
|
||||
plugin = TorchFSDPPlugin()
|
||||
booster = Booster(plugin=plugin)
|
||||
|
113
tests/test_checkpoint_io/test_torch_fsdp_checkpoint_io.py
Normal file
113
tests/test_checkpoint_io/test_torch_fsdp_checkpoint_io.py
Normal file
@@ -0,0 +1,113 @@
|
||||
import pytest
|
||||
import torch
|
||||
from packaging import version
|
||||
from torch import nn
|
||||
from torch.optim import SGD
|
||||
from torchvision.models import resnet18
|
||||
from utils import shared_tempdir
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
|
||||
if version.parse(torch.__version__) >= version.parse('1.12.0'):
|
||||
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
||||
from colossalai.booster.plugin import TorchFSDPPlugin
|
||||
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn, check_state_dict_equal
|
||||
|
||||
|
||||
def compare_nested_dict(dict1, dict2):
|
||||
for key in dict1:
|
||||
if key in dict2:
|
||||
if type(dict1[key]) is dict:
|
||||
assert type(dict2[key]) is dict
|
||||
diff = compare_nested_dict(dict1[key], dict2[key])
|
||||
if not diff:
|
||||
return diff
|
||||
elif type(dict1[key]) is list:
|
||||
assert type(dict2[key]) is list
|
||||
for i, val in enumerate(dict1[key]):
|
||||
if isinstance(val, torch.Tensor):
|
||||
if not torch.equal(dict1[key][i], dict2[key][i]):
|
||||
return False
|
||||
elif val != dict2[key][i]:
|
||||
return False
|
||||
elif type(dict1[key]) is torch.Tensor:
|
||||
assert type(dict2[key]) is torch.Tensor
|
||||
if not torch.equal(dict1[key], dict2[key]):
|
||||
return False
|
||||
else:
|
||||
if dict1[key] != dict2[key]:
|
||||
return False
|
||||
else:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def check_torch_fsdp_ckpt():
|
||||
model = resnet18()
|
||||
plugin = TorchFSDPPlugin()
|
||||
booster = Booster(plugin=plugin)
|
||||
optimizer = SGD(model.parameters(), lr=0.001, momentum=0.9)
|
||||
criterion = lambda x: x.mean()
|
||||
fsdp_model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
|
||||
|
||||
inputs = torch.randn(4, 3, 224, 224)
|
||||
outputs = None
|
||||
|
||||
def run_model():
|
||||
nonlocal outputs
|
||||
outputs = fsdp_model(inputs)
|
||||
optimizer.zero_grad()
|
||||
criterion(outputs).backward()
|
||||
optimizer.step()
|
||||
|
||||
with shared_tempdir() as tempdir:
|
||||
model_ckpt_path = f"{tempdir}/model"
|
||||
optim_ckpt_path = f"{tempdir}/optimizer"
|
||||
|
||||
run_model()
|
||||
|
||||
booster.save_model(fsdp_model, model_ckpt_path, shard=False)
|
||||
booster.save_optimizer(optimizer, optim_ckpt_path, shard=False)
|
||||
|
||||
full_msd = fsdp_model.state_dict()
|
||||
#full_osd = FSDP.full_optim_state_dict(fsdp_model, optimizer)
|
||||
sharded_osd = optimizer.state_dict()
|
||||
import copy
|
||||
sharded_osd = copy.deepcopy(sharded_osd)
|
||||
|
||||
run_model()
|
||||
|
||||
full_msd_updated = fsdp_model.state_dict()
|
||||
#full_osd_updated = FSDP.full_optim_state_dict(fsdp_model, optimizer, rank0_only=True)
|
||||
sharded_osd_updated = optimizer.state_dict()
|
||||
|
||||
assert not compare_nested_dict(sharded_osd, sharded_osd_updated)
|
||||
assert not compare_nested_dict(full_msd_updated, full_msd)
|
||||
outputs_first = fsdp_model(inputs)
|
||||
assert criterion(outputs_first) != criterion(outputs)
|
||||
|
||||
booster.load_model(fsdp_model, model_ckpt_path)
|
||||
booster.load_optimizer(optimizer, optim_ckpt_path)
|
||||
|
||||
full_msd_restore = fsdp_model.state_dict()
|
||||
#full_osd_restore = FSDP.full_optim_state_dict(fsdp_model, optimizer, rank0_only=True)
|
||||
sharded_osd_restore = optimizer.state_dict()
|
||||
|
||||
assert compare_nested_dict(sharded_osd, sharded_osd_restore)
|
||||
assert compare_nested_dict(full_msd_restore, full_msd)
|
||||
outputs_sec = fsdp_model(inputs)
|
||||
assert criterion(outputs_sec) == criterion(outputs)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
# init dist env
|
||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_torch_fsdp_ckpt()
|
||||
|
||||
|
||||
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.12.0'), reason="requires torch1.12 or higher")
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_torch_fsdp_ckpt():
|
||||
spawn(run_dist, 2)
|
Reference in New Issue
Block a user