fix pp state dict incomplete issue

This commit is contained in:
YeAnbang 2025-04-29 16:06:01 +08:00
parent 064be50946
commit 6c1b3b694f
4 changed files with 78 additions and 20 deletions

View File

@ -59,13 +59,8 @@ class BaseConsumer:
self.lr_scheduler = None self.lr_scheduler = None
def setup(self) -> None: def setup(self) -> None:
for i in range(self.num_producers):
cc.init_collective_group(self.world_size + 1, self.rank + 1, group_name=f"sync_data_{i}")
if self.rank == 0:
cc.init_collective_group(self.num_producers + 1, self.num_producers, group_name="sync_model")
launch(self.rank, self.world_size, self.master_addr, self.master_port, local_rank=0) launch(self.rank, self.world_size, self.master_addr, self.master_port, local_rank=0)
plugin_config = dict(tp_size=1, pp_size=1, precision="bf16", zero_stage=2) # default config
plugin_config = dict(tp_size=1, pp_size=1, precision="bf16", zero_stage=2)
if ( if (
self.plugin_config.get("pp_size", 1) > 1 self.plugin_config.get("pp_size", 1) > 1
and "num_microbatches" not in self.plugin_config and "num_microbatches" not in self.plugin_config
@ -79,10 +74,16 @@ class BaseConsumer:
self.tp_rank = dist.get_rank(self.plugin.tp_group) self.tp_rank = dist.get_rank(self.plugin.tp_group)
self.dp_size = dist.get_world_size(self.plugin.dp_group) self.dp_size = dist.get_world_size(self.plugin.dp_group)
self.tp_size = dist.get_world_size(self.plugin.tp_group)
self.buffer = [] self.buffer = []
self.recv_cnt = 0 self.recv_cnt = 0
for i in range(self.num_producers):
cc.init_collective_group(self.world_size + 1, self.rank + 1, group_name=f"sync_data_{i}")
if self.dp_rank == 0 and self.tp_rank == 0:
group_name = f"sync_model_pp_stage_{self.plugin.stage_manager.stage}"
cc.init_collective_group(self.num_producers + 1, self.num_producers, group_name=group_name)
def state_dict(self) -> Dict[str, torch.Tensor]: def state_dict(self) -> Dict[str, torch.Tensor]:
raise NotImplementedError raise NotImplementedError
@ -140,12 +141,13 @@ class BaseConsumer:
print(f"Saved model checkpoint at step {step + 1} in folder {save_path}") print(f"Saved model checkpoint at step {step + 1} in folder {save_path}")
if episode != self.num_episodes - 1 or step != self.num_update_per_episode - 1: if episode != self.num_episodes - 1 or step != self.num_update_per_episode - 1:
print(f"[T{dist.get_rank()}] Sync model episode {episode} step {step}")
torch.cuda.empty_cache() torch.cuda.empty_cache()
state_dict = self.state_dict() state_dict = self.state_dict()
if self.rank == 0: if self.dp_rank == 0 and self.tp_rank == 0:
group_name = f"sync_model_pp_stage_{self.plugin.stage_manager.stage}"
print(f"[T{dist.get_rank()}] Sync model episode {episode} step {step}")
ray_broadcast_tensor_dict( ray_broadcast_tensor_dict(
state_dict, src=self.num_producers, device=self.device, group_name="sync_model" state_dict, src=self.num_producers, device=self.device, group_name=group_name
) )
del state_dict del state_dict
torch.cuda.empty_cache() torch.cuda.empty_cache()
@ -191,6 +193,9 @@ class SimpleConsumer(BaseConsumer):
self.optimizer = HybridAdam(self.model.parameters(), lr=1e-3) self.optimizer = HybridAdam(self.model.parameters(), lr=1e-3)
self.accum_loss = torch.zeros(1, device=self.device) self.accum_loss = torch.zeros(1, device=self.device)
def get_plugin(self):
return self.plugin
def setup(self): def setup(self):
super().setup() super().setup()
self.model, self.optimizer, *_ = self.booster.boost(self.model, self.optimizer) self.model, self.optimizer, *_ = self.booster.boost(self.model, self.optimizer)

View File

@ -75,6 +75,7 @@ class GRPOConsumer(BaseConsumer):
) )
path = model_config.pop("path") path = model_config.pop("path")
self.policy_model = AutoModelForCausalLM.from_pretrained(path, **model_config) self.policy_model = AutoModelForCausalLM.from_pretrained(path, **model_config)
self.orig_state_dict_key = [k for k in self.policy_model.state_dict()]
self.policy_model.train() self.policy_model.train()
self.policy_model.gradient_checkpointing_enable() self.policy_model.gradient_checkpointing_enable()
self.optimizer = HybridAdam(self.policy_model.parameters(), lr=grpo_config.get("lr", 1e-6)) self.optimizer = HybridAdam(self.policy_model.parameters(), lr=grpo_config.get("lr", 1e-6))
@ -150,6 +151,22 @@ class GRPOConsumer(BaseConsumer):
eta_min=0.1 * grpo_config.get("lr", 1e-6), eta_min=0.1 * grpo_config.get("lr", 1e-6),
) )
def get_device_mesh_mapping(self):
return {
"rank": self.rank,
"tp_rank": self.tp_rank,
"tp_size": self.tp_size,
"dp_size": self.dp_size,
"dp_rank": self.dp_rank,
"pp_size": self.booster.plugin.stage_manager.num_stages,
"pp_stage": self.booster.plugin.stage_manager.stage,
"is_last_stage": self.booster.plugin.stage_manager.is_last_stage(),
"world_size": self.world_size,
}
def get_model_state_dict_keys(self):
return self.orig_state_dict_key
def setup(self): def setup(self):
super().setup() super().setup()
if self.use_wandb and ( if self.use_wandb and (

View File

@ -66,7 +66,7 @@ def launch_distributed(
num_update_per_episode = num_samples // global_inference_batch_size num_update_per_episode = num_samples // global_inference_batch_size
num_recv_per_update = inference_batch_size // inference_microbatch_size num_recv_per_update = inference_batch_size // inference_microbatch_size
procs = [] producer_procs = []
for i in range(num_producers): for i in range(num_producers):
producer = SimpleProducer.options(num_gpus=num_proc_per_producer).remote( producer = SimpleProducer.options(num_gpus=num_proc_per_producer).remote(
producer_idx=i, producer_idx=i,
@ -78,18 +78,20 @@ def launch_distributed(
dataloaders_config=dataloaders_config, dataloaders_config=dataloaders_config,
model_config=inference_model_config, model_config=inference_model_config,
generate_config=generate_config, generate_config=generate_config,
consumer_plugin_config=plugin_config,
tokenizer_config=tokenizer_config, tokenizer_config=tokenizer_config,
microbatch_size=inference_microbatch_size, microbatch_size=inference_microbatch_size,
backend=inference_backend, backend=inference_backend,
num_generations=num_generations, num_generations=num_generations,
) )
procs.append(producer) producer_procs.append(producer)
generate_config_consumer = copy.deepcopy(generate_config) generate_config_consumer = copy.deepcopy(generate_config)
generate_config_consumer.update( generate_config_consumer.update(
dict( dict(
backend=inference_backend, backend=inference_backend,
) )
) )
consumer_procs = []
for i in range(num_consumer_procs): for i in range(num_consumer_procs):
consumer = core_consumer.options(num_gpus=1).remote( consumer = core_consumer.options(num_gpus=1).remote(
num_producers=num_producers, num_producers=num_producers,
@ -111,6 +113,14 @@ def launch_distributed(
save_interval=save_interval, save_interval=save_interval,
save_dir=save_dir, save_dir=save_dir,
) )
procs.append(consumer) consumer_procs.append(consumer)
ray.get([p.setup.remote() for p in procs]) # setup the consumer procs first
ray.get([p.setup.remote() for p in consumer_procs])
# get the device mesh mapping from consumer procs
consumer_device_mesh_mapping = ray.get([p.get_device_mesh_mapping.remote() for p in consumer_procs])
model_state_dict_keys = ray.get(consumer_procs[0].get_model_state_dict_keys.remote())
# setup the producer procs
ray.get([p.setup.remote(consumer_device_mesh_mapping, model_state_dict_keys) for p in producer_procs])
# loop
procs = producer_procs + consumer_procs
ray.get([p.loop.remote() for p in procs]) ray.get([p.loop.remote() for p in procs])

View File

@ -1,4 +1,4 @@
from typing import Any, Dict, Optional from typing import Any, Dict, List, Optional
import ray import ray
import ray.util.collective as cc import ray.util.collective as cc
@ -26,6 +26,7 @@ class BaseProducer:
dataloaders_config: Dict[str, Any], dataloaders_config: Dict[str, Any],
model_config: Dict[str, Any], model_config: Dict[str, Any],
generate_config: Dict[str, Any], generate_config: Dict[str, Any],
consumer_plugin_config: Dict[str, Any] = None,
tokenizer_config: Optional[Dict[str, Any]] = None, tokenizer_config: Optional[Dict[str, Any]] = None,
microbatch_size: int = 1, microbatch_size: int = 1,
backend: str = "transformers", backend: str = "transformers",
@ -43,6 +44,7 @@ class BaseProducer:
self.model_config = model_config self.model_config = model_config
self.generate_config = generate_config self.generate_config = generate_config
self.tokenizer_config = tokenizer_config self.tokenizer_config = tokenizer_config
self.consumer_plugin_config = consumer_plugin_config
# init tokenizer # init tokenizer
if tokenizer_config is None: if tokenizer_config is None:
@ -78,9 +80,18 @@ class BaseProducer:
else: else:
raise ValueError(f"Unexpected backend {backend}") raise ValueError(f"Unexpected backend {backend}")
def setup(self) -> None: def setup(self, consumer_device_mesh_mapping: Dict[str, Any] = None, model_state_dict_keys: List = None) -> None:
self.consumer_device_mesh_mapping = consumer_device_mesh_mapping
self.model_state_dict_keys = model_state_dict_keys
cc.init_collective_group(1 + self.num_consumer_procs, 0, group_name=f"sync_data_{self.producer_idx}") cc.init_collective_group(1 + self.num_consumer_procs, 0, group_name=f"sync_data_{self.producer_idx}")
cc.init_collective_group(self.num_producers + 1, self.producer_idx, group_name="sync_model") # cc.init_collective_group(self.num_producers + 1, self.producer_idx, group_name="sync_model_pp_stage_0")
for i in range(self.num_consumer_procs):
device_mesh_mapping = self.consumer_device_mesh_mapping[i]
device_mesh_mapping["rank"]
# TODO: support ep, sp
if device_mesh_mapping["dp_rank"] == 0 and device_mesh_mapping["tp_rank"] == 0:
group_name = f"sync_model_pp_stage_{device_mesh_mapping['pp_stage']}"
cc.init_collective_group(self.num_producers + 1, self.producer_idx, group_name=group_name)
def rollout(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs) -> Dict[str, torch.Tensor]: def rollout(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs) -> Dict[str, torch.Tensor]:
raise NotImplementedError raise NotImplementedError
@ -125,14 +136,27 @@ class BaseProducer:
): ):
self.model.llm.sleep() # revict KV_cache to avoid OOM self.model.llm.sleep() # revict KV_cache to avoid OOM
# don't sync model for last iteration # don't sync model for last iteration
torch.cuda.empty_cache()
state_dict = {}
print( print(
f"[P{self.producer_idx}] Sync model episode {episode} step {(i + 1) // self.num_microbatches - 1}" f"[P{self.producer_idx}] Sync model episode {episode} step {(i + 1) // self.num_microbatches - 1}"
) )
torch.cuda.empty_cache() for consumer_rank_id in range(self.num_consumer_procs):
device_mesh_mapping = self.consumer_device_mesh_mapping[consumer_rank_id]
device_mesh_mapping["rank"]
# TODO: support ep, sp
if device_mesh_mapping["dp_rank"] == 0 and device_mesh_mapping["tp_rank"] == 0:
group_name = f"sync_model_pp_stage_{device_mesh_mapping['pp_stage']}"
state_dict.update(
ray_broadcast_tensor_dict(
None, src=self.num_producers, device=self.device, group_name=group_name
)
)
# check model sync integrity
assert len(state_dict) == len(
self.model_state_dict_keys
), f"state dict keys has {len(state_dict)} unique keys not equal original model with {len(self.model_state_dict_keys)} keys. Missing keys: {set(self.model_state_dict_keys)-set(state_dict.keys())}. Please kindly inform the developer."
state_dict = ray_broadcast_tensor_dict(
None, self.num_producers, device=self.device, group_name="sync_model"
)
self.load_state_dict(state_dict) self.load_state_dict(state_dict)
del state_dict del state_dict
torch.cuda.empty_cache() torch.cuda.empty_cache()
@ -166,6 +190,7 @@ class SimpleProducer(BaseProducer):
dataloaders_config, dataloaders_config,
model_config, model_config,
generate_config, generate_config,
consumer_plugin_config=None,
tokenizer_config=None, tokenizer_config=None,
microbatch_size=1, microbatch_size=1,
backend="transformers", backend="transformers",
@ -181,6 +206,7 @@ class SimpleProducer(BaseProducer):
dataloaders_config, dataloaders_config,
model_config, model_config,
generate_config, generate_config,
consumer_plugin_config,
tokenizer_config, tokenizer_config,
microbatch_size, microbatch_size,
backend, backend,