mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-29 00:38:02 +00:00
add fp32 master params in sharded adam
This commit is contained in:
parent
6185b9772d
commit
6c290dbb08
@ -1,5 +1,5 @@
|
|||||||
from enum import Enum
|
from enum import Enum
|
||||||
from typing import Optional, Union
|
from typing import Dict, Optional, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
@ -11,6 +11,7 @@ from colossalai.nn.optimizer import ColossalaiOptimizer
|
|||||||
from colossalai.zero.sharded_model import ShardedModelV2
|
from colossalai.zero.sharded_model import ShardedModelV2
|
||||||
from torch import Tensor
|
from torch import Tensor
|
||||||
from torch.distributed import ProcessGroup
|
from torch.distributed import ProcessGroup
|
||||||
|
from torch.nn.parameter import Parameter
|
||||||
from torch.optim import Optimizer
|
from torch.optim import Optimizer
|
||||||
|
|
||||||
from ._utils import has_inf_or_nan
|
from ._utils import has_inf_or_nan
|
||||||
@ -39,7 +40,7 @@ class ShardedAdam(ColossalaiOptimizer):
|
|||||||
super().__init__(adam_optim)
|
super().__init__(adam_optim)
|
||||||
self.model: Union[nn.Module, ShardedModelV2] = sharded_model
|
self.model: Union[nn.Module, ShardedModelV2] = sharded_model
|
||||||
self.model_is_sharded = isinstance(sharded_model, ShardedModelV2)
|
self.model_is_sharded = isinstance(sharded_model, ShardedModelV2)
|
||||||
self.state_device = torch.cuda.current_device() if not cpu_offload else torch.device('cpu')
|
self.device = torch.cuda.current_device() if not cpu_offload else torch.device('cpu')
|
||||||
self.optim_state: OptimState = OptimState.UNSCALED
|
self.optim_state: OptimState = OptimState.UNSCALED
|
||||||
self.dp_process_group = dp_process_group or gpc.get_group(ParallelMode.DATA)
|
self.dp_process_group = dp_process_group or gpc.get_group(ParallelMode.DATA)
|
||||||
self.mp_process_group = mp_process_group or gpc.get_group(ParallelMode.MODEL)
|
self.mp_process_group = mp_process_group or gpc.get_group(ParallelMode.MODEL)
|
||||||
@ -51,35 +52,18 @@ class ShardedAdam(ColossalaiOptimizer):
|
|||||||
growth_interval=growth_interval,
|
growth_interval=growth_interval,
|
||||||
hysteresis=hysteresis,
|
hysteresis=hysteresis,
|
||||||
max_scale=max_scale)
|
max_scale=max_scale)
|
||||||
self._found_overflow: Tensor = torch.FloatTensor([0]).to(self.state_device)
|
self._found_overflow: Tensor = torch.FloatTensor([0]).to(self.device)
|
||||||
|
|
||||||
|
# Store fp32 params
|
||||||
|
self.master_params: Dict[Parameter, Tensor] = {}
|
||||||
|
|
||||||
# Early state initialization
|
|
||||||
for group in adam_optim.param_groups:
|
for group in adam_optim.param_groups:
|
||||||
for p in group['params']:
|
for p in group['params']:
|
||||||
state_shape = p.shape
|
|
||||||
if hasattr(p, 'ca_attr'):
|
if hasattr(p, 'ca_attr'):
|
||||||
assert p.ca_attr.is_sharded, 'ShardedAdam can be only used with sharded model'
|
assert p.ca_attr.is_sharded, 'ShardedAdam can be only used with sharded model'
|
||||||
# TODO: use payload shape
|
self.master_params[p] = p.ca_attr.payload(self.device).to(torch.float)
|
||||||
state_shape = p.ca_attr.payload(self.state_device)
|
else:
|
||||||
state = adam_optim.state[p]
|
self.master_params[p] = p.data.to(torch.float)
|
||||||
assert len(state) == 0, 'adam optimizer initialized'
|
|
||||||
state['step'] = 0
|
|
||||||
# Exponential moving average of gradient values
|
|
||||||
state['exp_avg'] = torch.zeros(state_shape,
|
|
||||||
memory_format=torch.preserve_format,
|
|
||||||
dtype=torch.float,
|
|
||||||
device=self.state_device)
|
|
||||||
# Exponential moving average of squared gradient values
|
|
||||||
state['exp_avg_sq'] = torch.zeros(state_shape,
|
|
||||||
memory_format=torch.preserve_format,
|
|
||||||
dtype=torch.float,
|
|
||||||
device=self.state_device)
|
|
||||||
if group['amsgrad']:
|
|
||||||
# Maintains max of all exp. moving avg. of sq. grad. values
|
|
||||||
state['max_exp_avg_sq'] = torch.zeros(state_shape,
|
|
||||||
memory_format=torch.preserve_format,
|
|
||||||
dtype=torch.float,
|
|
||||||
device=self.state_device)
|
|
||||||
|
|
||||||
def step(self, *args, **kwargs):
|
def step(self, *args, **kwargs):
|
||||||
# unscale grads if scaled
|
# unscale grads if scaled
|
||||||
@ -93,19 +77,15 @@ class ShardedAdam(ColossalaiOptimizer):
|
|||||||
self.zero_grad()
|
self.zero_grad()
|
||||||
return
|
return
|
||||||
|
|
||||||
# Write payload back to p.data
|
# Write master param to p.data
|
||||||
for group in self.optim.param_groups:
|
for group in self.optim.param_groups:
|
||||||
for p in group['params']:
|
for p in group['params']:
|
||||||
data = p.data
|
p.data = self.master_params[p]
|
||||||
if hasattr(p, 'ca_attr'):
|
|
||||||
data = p.ca_attr.payload(self.state_device)
|
|
||||||
if torch.is_floating_point(data) and data.dtype != torch.float:
|
|
||||||
data = data.to(torch.float)
|
|
||||||
p.data = data
|
|
||||||
ret = self.optim.step(*args, **kwargs)
|
ret = self.optim.step(*args, **kwargs)
|
||||||
# Set p.data to None
|
# Write master param to payload and set p.data to None
|
||||||
for group in self.optim.param_groups:
|
for group in self.optim.param_groups:
|
||||||
for p in group['params']:
|
for p in group['params']:
|
||||||
|
# TODO: update payload
|
||||||
p.data = None
|
p.data = None
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user