mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 04:24:47 +00:00
[autoparallel] refactored the autoparallel module for organization (#1706)
* [autoparallel] refactored the autoparallel module for organization * polish code
This commit is contained in:
113
colossalai/auto_parallel/tensor_shard/utils/sharding.py
Normal file
113
colossalai/auto_parallel/tensor_shard/utils/sharding.py
Normal file
@@ -0,0 +1,113 @@
|
||||
import operator
|
||||
from copy import deepcopy
|
||||
from functools import reduce
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
__all__ = [
|
||||
'switch_partition_dim', 'update_partition_dim', 'enumerate_all_possible_1d_sharding',
|
||||
'enumerate_all_possible_2d_sharding', 'generate_sharding_size'
|
||||
]
|
||||
|
||||
|
||||
def switch_partition_dim(sharding_spec: ShardingSpec, dim1: int, dim2: int) -> ShardingSpec:
|
||||
"""
|
||||
Switch the sharding mesh dimensions for two tensor dimensions. This operation is in-place.
|
||||
|
||||
Args:
|
||||
sharding_spec (ShardingSpec): the sharding spec for which partition dim are switched
|
||||
dim1 (int): the tensor dimension to switch
|
||||
dim2 (int): the tensor dimension to switch
|
||||
"""
|
||||
assert len(sharding_spec.entire_shape) == 2
|
||||
dim_partition_dict = sharding_spec.dim_partition_dict
|
||||
dim1_partition = dim_partition_dict.pop(dim1, None)
|
||||
dim2_partition = dim_partition_dict.pop(dim2, None)
|
||||
|
||||
if dim1_partition:
|
||||
dim_partition_dict[dim2] = dim1_partition
|
||||
|
||||
if dim2_partition:
|
||||
dim_partition_dict[dim1] = dim2_partition
|
||||
|
||||
# re-init the sharding spec
|
||||
sharding_spec.__init__(sharding_spec.device_mesh, sharding_spec.entire_shape, dim_partition_dict)
|
||||
return sharding_spec
|
||||
|
||||
|
||||
def update_partition_dim(sharding_spec: ShardingSpec,
|
||||
dim_mapping: Dict[int, int],
|
||||
physical_shape: torch.Size,
|
||||
inplace: bool = False):
|
||||
"""
|
||||
This method is used to update the partition dim dict from the logical one to the physical one.
|
||||
|
||||
Args:
|
||||
sharding_spec (ShardingSpec): the sharding spec for which partition dims are updated
|
||||
dim_mapping (Dict[int, int]): the mapping from the logical tensor dimension to the physical tensor dimension
|
||||
physical_shape (torch.Size): the physical shape for the tensor
|
||||
"""
|
||||
|
||||
if inplace:
|
||||
current_sharding_spec = sharding_spec
|
||||
else:
|
||||
current_sharding_spec = deepcopy(sharding_spec)
|
||||
|
||||
old_dim_partition_dict = current_sharding_spec.dim_partition_dict
|
||||
new_dim_partition_dict = {}
|
||||
|
||||
# assign new dim
|
||||
for old_dim, new_dim in dim_mapping.items():
|
||||
mesh_dims = old_dim_partition_dict.pop(old_dim)
|
||||
new_dim_partition_dict[new_dim] = mesh_dims
|
||||
|
||||
for tensor_dim, mesh_dims in old_dim_partition_dict.items():
|
||||
if tensor_dim in new_dim_partition_dict:
|
||||
raise KeyError(f"There are duplicated entries for the tensor sharding dimension {tensor_dim}")
|
||||
else:
|
||||
new_dim_partition_dict[tensor_dim] = mesh_dims
|
||||
|
||||
# update sharding spec
|
||||
current_sharding_spec.__init__(device_mesh=sharding_spec.device_mesh,
|
||||
entire_shape=physical_shape,
|
||||
dim_partition_dict=new_dim_partition_dict)
|
||||
return current_sharding_spec
|
||||
|
||||
|
||||
def enumerate_all_possible_2d_sharding(mesh_dim_0, mesh_dim_1, dim_size):
|
||||
dim_partition_list = []
|
||||
# enumerate all the 2D sharding cases
|
||||
for i in range(dim_size):
|
||||
for j in range(i + 1, dim_size):
|
||||
dim_partition_dict_0 = {i: [mesh_dim_0], j: [mesh_dim_1]}
|
||||
dim_partition_dict_1 = {i: [mesh_dim_1], j: [mesh_dim_0]}
|
||||
dim_partition_list.append(dim_partition_dict_0)
|
||||
dim_partition_list.append(dim_partition_dict_1)
|
||||
for i in range(dim_size):
|
||||
dim_partition_dict_flatten = {i: [mesh_dim_0, mesh_dim_1]}
|
||||
dim_partition_list.append(dim_partition_dict_flatten)
|
||||
|
||||
return dim_partition_list
|
||||
|
||||
|
||||
def enumerate_all_possible_1d_sharding(mesh_dim_0, dim_size):
|
||||
dim_partition_list = []
|
||||
# enumerate all the 1D sharding cases
|
||||
for i in range(dim_size):
|
||||
dim_partition_dict_0 = {i: [mesh_dim_0]}
|
||||
dim_partition_list.append(dim_partition_dict_0)
|
||||
|
||||
return dim_partition_list
|
||||
|
||||
|
||||
def generate_sharding_size(dim_partition_dict, device_mesh):
|
||||
total_sharding_size = 1
|
||||
for mesh_dim_list in dim_partition_dict.values():
|
||||
mesh_dim_sharding_size = [device_mesh.shape[mesh_dim] for mesh_dim in mesh_dim_list]
|
||||
sharding_size = reduce(operator.mul, mesh_dim_sharding_size)
|
||||
total_sharding_size *= sharding_size
|
||||
|
||||
return total_sharding_size
|
Reference in New Issue
Block a user