[Tensor] add module check and bert test (#1031)

* add Embedding

* Add bert test

* polish

* add check module test

* polish

* polish

* polish

* polish
This commit is contained in:
Ziyue Jiang
2022-05-26 18:15:42 +08:00
committed by GitHub
parent 7106bd671d
commit 6c5996a56e
10 changed files with 170 additions and 45 deletions

View File

@@ -9,11 +9,11 @@ from .optim.colo_optimizer import ColoOptimizer
from . import distspec
from .dist_spec_mgr import DistSpecManager
from .module_utils import register_colo_module, is_colo_module, get_colo_module, init_colo_module, check_colo_module
from .modules import ColoLinear
from .modules import ColoLinear, ColoEmbedding
__all__ = [
'ColoTensor', 'convert_parameter', 'colo_op_impl', 'ComputePattern', 'TensorSpec', 'ParallelAction',
'named_params_with_colotensor', 'ColoOptimizer', 'ColoParameter', 'distspec', 'DistSpecManager',
'register_colo_module', 'is_colo_module', 'get_colo_module', 'init_colo_module', 'check_colo_module',
'ColoLinear'
'ColoLinear', 'ColoEmbedding'
]

View File

@@ -26,6 +26,13 @@ class ColoParameter(ColoTensor):
self._type = TensorType.MODEL
self._graph_node = None
# a list contains modules sharing this ColoParameter with others.
self._shared_param_modules = []
@property
def shared_param_modules(self):
return self._shared_param_modules
@staticmethod
def from_torch_tensor(tensor: torch.Tensor,
requires_grad: bool = True,
@@ -36,3 +43,4 @@ class ColoParameter(ColoTensor):
def __repr__(self):
return f'ColoParameter: {torch.Tensor.__repr__(self)}'

View File

@@ -30,6 +30,12 @@ class _DistSpec:
return False
return True
def __repr__(self) -> str:
res = "\nDistSpec:\n\t"
for attr in dir(self):
if not attr.startswith('__'):
res += f'{attr}: {str(getattr(self, attr))}\n\t'
return res
def replicate(process_group: Optional[ProcessGroup] = None) -> _DistSpec:
# process_group=None means global process group

View File

@@ -18,7 +18,6 @@ def get_colo_module(module: torch.nn.Module):
global _COLOSSAL_MODULES
if is_colo_module(module):
colo_module = _COLOSSAL_MODULES[type(module)]
colo_module.register()
return colo_module
else:
return None
@@ -43,6 +42,7 @@ def check_colo_module(module: torch.nn.Module, recursive=True):
continue
if compute_pattern is not None:
colo_module.register(compute_pattern)
if not colo_module.has_compute_pattern(compute_pattern):
raise Exception(f'Invalid ColoParameter spec: ComputePattern {compute_pattern} in {module} is not allowed.')
@@ -65,28 +65,34 @@ def check_colo_module(module: torch.nn.Module, recursive=True):
break
if match_specs == False:
raise Exception(f'Invalid ColoParameter spec: Params in {module} are incorrectly sharded.')
if recursive == True:
for submodule in module.children():
check_colo_module(submodule, recursive=True)
def init_colo_module(module: torch.nn.Module, parallel_action: ParallelAction, recursive=True, label='default'):
def init_colo_module(module: torch.nn.Module, parallel_action: ParallelAction, recursive=True, mode='default'):
compute_pattern = parallel_action.compute_pattern
if is_colo_module(module):
# for each param
# set DistSpec and ParallelAction
colo_module = get_colo_module(module)
if not colo_module.has_compute_pattern_with_label(compute_pattern, label=label):
colo_module.register(compute_pattern)
if not colo_module.has_compute_pattern_with_mode(compute_pattern, mode=mode):
raise NotImplementedError
for param_name, dist_spec in colo_module.get_dist_specs_with_label(compute_pattern, label=label).items():
# a set for modules which update at least one param in the init process.
# these modules need to be checked whether all params still match one of the valid compute pattern.
modules_update_param = {module}
for param_name, dist_spec in colo_module.get_dist_specs_with_mode(compute_pattern, mode=mode).items():
if dist_spec is None:
continue
param = module.get_parameter(param_name)
if isinstance(param, ColoParameter):
spec = TensorSpec(dist_spec, parallel_action)
param.set_spec(spec)
check_colo_module(module, recursive=False)
for mod in param.shared_param_modules:
modules_update_param.add(mod)
for mod in modules_update_param:
check_colo_module(mod, recursive=False)
if recursive == True:
for submodule in module.children():
init_colo_module(submodule, parallel_action, recursive=True, label=label)
init_colo_module(submodule, parallel_action, recursive=True, mode=mode)

View File

@@ -1,2 +1,3 @@
from .colo_module import ColoModule
from .linear import ColoLinear
from .linear import ColoLinear
from .embedding import ColoEmbedding

View File

@@ -21,14 +21,14 @@ class ColoModule(object):
def _register_shard_params(self, params: List[str]):
self._shard_params = params
def _register_allowed_patterns(self, compute_pattern: ComputePattern, dist_specs: Dict[str, _DistSpec], label='default'):
def _register_allowed_patterns(self, compute_pattern: ComputePattern, dist_specs: Dict[str, _DistSpec], mode='default'):
assert list(dist_specs.keys()).sort() == self._shard_params.sort(), 'Every registered param should have dist_spec.'
if not compute_pattern in self._allowed_patterns:
self._allowed_patterns[compute_pattern] = {}
self._allowed_patterns[compute_pattern][label] = dist_specs
self._allowed_patterns[compute_pattern][mode] = dist_specs
def _set_default(self, compute_pattern: ComputePattern, target_label):
self._allowed_patterns[compute_pattern]['default'] = self._allowed_patterns[compute_pattern][target_label]
def _set_default(self, compute_pattern: ComputePattern, target_mode):
self._allowed_patterns[compute_pattern]['default'] = self._allowed_patterns[compute_pattern][target_mode]
def has_compute_pattern(self, compute_pattern: ComputePattern):
return compute_pattern in self._allowed_patterns
@@ -37,15 +37,15 @@ class ColoModule(object):
assert self.has_compute_pattern(compute_pattern)
return self._allowed_patterns[compute_pattern]
def has_compute_pattern_with_label(self, compute_pattern: ComputePattern, label='default'):
return compute_pattern in self._allowed_patterns and label in self._allowed_patterns[compute_pattern]
def has_compute_pattern_with_mode(self, compute_pattern: ComputePattern, mode='default'):
return compute_pattern in self._allowed_patterns and mode in self._allowed_patterns[compute_pattern]
def get_dist_specs_with_label(self, compute_pattern: ComputePattern, label='default'):
assert self.has_compute_pattern_with_label(compute_pattern, label)
return self._allowed_patterns[compute_pattern][label]
def get_dist_specs_with_mode(self, compute_pattern: ComputePattern, mode='default'):
assert self.has_compute_pattern_with_mode(compute_pattern, mode)
return self._allowed_patterns[compute_pattern][mode]
def get_param_names(self):
return self._shard_params
def register(self):
def register(self, compute_pattern):
raise NotImplementedError

View File

@@ -0,0 +1,36 @@
from .colo_module import ColoModule
from colossalai.tensor import ComputePattern, distspec
from colossalai.core import global_context as gpc
from colossalai.context.parallel_mode import ParallelMode
class ColoEmbedding(ColoModule):
def __init__(self):
super(ColoEmbedding, self).__init__()
self._register_shard_params(['weight'])
def register(self, compute_pattern):
if not compute_pattern in self._allowed_patterns:
if ComputePattern.TP1D == compute_pattern:
self._set_TP1D()
def _set_TP1D(self):
# TP1D Row Linear
_compute_pattern = ComputePattern.TP1D
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
},
mode='row',
)
# TP1D Col Linear
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
},
mode='col',
)
self._set_default(compute_pattern=_compute_pattern, target_mode='row')

View File

@@ -7,12 +7,11 @@ class ColoLinear(ColoModule):
def __init__(self):
super(ColoLinear, self).__init__()
self._register_shard_params(['weight', 'bias'])
self._register = False
def register(self):
if self._register == False:
self._set_TP1D()
self._register = True
def register(self, compute_pattern):
if not compute_pattern in self._allowed_patterns:
if ComputePattern.TP1D == compute_pattern:
self._set_TP1D()
def _set_TP1D(self):
# TP1D Row Linear
@@ -23,7 +22,7 @@ class ColoLinear(ColoModule):
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'bias': None
},
label='row',
mode='row',
)
# TP1D Col Linear
@@ -33,7 +32,7 @@ class ColoLinear(ColoModule):
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'bias': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)])
},
label='col',
mode='col',
)
self._set_default(compute_pattern=_compute_pattern, target_label='row')
self._set_default(compute_pattern=_compute_pattern, target_mode='row')