mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-16 06:30:41 +00:00
[test] added transformers models to test model zoo (#3135)
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
from . import diffusers, timm, torchvision
|
||||
from . import diffusers, timm, torchvision, transformers
|
||||
from .registry import model_zoo
|
||||
|
||||
__all__ = ['model_zoo']
|
||||
|
5
tests/kit/model_zoo/transformers/__init__.py
Normal file
5
tests/kit/model_zoo/transformers/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
from .albert import *
|
||||
from .bert import *
|
||||
from .gpt import *
|
||||
from .opt import *
|
||||
from .t5 import *
|
85
tests/kit/model_zoo/transformers/albert.py
Normal file
85
tests/kit/model_zoo/transformers/albert.py
Normal file
@@ -0,0 +1,85 @@
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence ALBERT
|
||||
# ===============================
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
|
||||
|
||||
def data_gen_fn():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
||||
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
config = transformers.AlbertConfig(embedding_size=128,
|
||||
hidden_size=128,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=256)
|
||||
|
||||
model_zoo.register(name='transformers_albert',
|
||||
model_fn=lambda: transformers.AlbertModel(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_albert_for_pretraining',
|
||||
model_fn=lambda: transformers.AlbertForPreTraining(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_albert_for_masked_lm',
|
||||
model_fn=lambda: transformers.AlbertForMaskedLM(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_albert_for_sequence_classification',
|
||||
model_fn=lambda: transformers.AlbertForSequenceClassification(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_albert_for_token_classification',
|
||||
model_fn=lambda: transformers.AlbertForTokenClassification(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
|
||||
# ===============================
|
||||
# Register multi-sentence ALBERT
|
||||
# ===============================
|
||||
|
||||
|
||||
def data_gen_for_qa():
|
||||
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
||||
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
inputs = tokenizer(question, text, return_tensors="pt")
|
||||
return inputs
|
||||
|
||||
|
||||
def data_gen_for_mcq():
|
||||
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
||||
choice0 = "It is eaten with a fork and a knife."
|
||||
choice1 = "It is eaten while held in the hand."
|
||||
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
|
||||
encoding = {k: v.unsqueeze(0) for k, v in encoding.items()}
|
||||
return encoding
|
||||
|
||||
|
||||
model_zoo.register(name='transformers_albert_for_question_answering',
|
||||
model_fn=lambda: transformers.AlbertForQuestionAnswering(config),
|
||||
data_gen_fn=data_gen_for_qa,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_albert_for_multiple_choice',
|
||||
model_fn=lambda: transformers.AlbertForMultipleChoice(config),
|
||||
data_gen_fn=data_gen_for_mcq,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
88
tests/kit/model_zoo/transformers/bert.py
Normal file
88
tests/kit/model_zoo/transformers/bert.py
Normal file
@@ -0,0 +1,88 @@
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence BERT
|
||||
# ===============================
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
|
||||
|
||||
def data_gen_fn():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
||||
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
config = transformers.BertConfig(hidden_size=128, num_hidden_layers=2, num_attention_heads=4, intermediate_size=256)
|
||||
|
||||
# register the BERT variants
|
||||
model_zoo.register(name='transformers_bert',
|
||||
model_fn=lambda: transformers.BertModel(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bert_for_pretraining',
|
||||
model_fn=lambda: transformers.BertForPreTraining(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bert_lm_head_model',
|
||||
model_fn=lambda: transformers.BertLMHeadModel(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bert_for_masked_lm',
|
||||
model_fn=lambda: transformers.BertForMaskedLM(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bert_for_sequence_classification',
|
||||
model_fn=lambda: transformers.BertForSequenceClassification(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bert_for_token_classification',
|
||||
model_fn=lambda: transformers.BertForTokenClassification(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
|
||||
|
||||
# ===============================
|
||||
# Register multi-sentence BERT
|
||||
# ===============================
|
||||
def data_gen_for_next_sentence():
|
||||
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
||||
next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
||||
encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
|
||||
return encoding
|
||||
|
||||
|
||||
def data_gen_for_mcq():
|
||||
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
||||
choice0 = "It is eaten with a fork and a knife."
|
||||
choice1 = "It is eaten while held in the hand."
|
||||
encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
|
||||
encoding = {k: v.unsqueeze(0) for k, v in encoding.items()}
|
||||
return encoding
|
||||
|
||||
|
||||
# register the following models
|
||||
model_zoo.register(name='transformers_bert_for_next_sentence',
|
||||
model_fn=lambda: transformers.BertForNextSentencePrediction(config),
|
||||
data_gen_fn=data_gen_for_next_sentence,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bert_for_mcq',
|
||||
model_fn=lambda: transformers.BertForMultipleChoice(config),
|
||||
data_gen_fn=data_gen_for_mcq,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
49
tests/kit/model_zoo/transformers/gpt.py
Normal file
49
tests/kit/model_zoo/transformers/gpt.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence GPT
|
||||
# ===============================
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
|
||||
|
||||
def data_gen():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
||||
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
config = transformers.GPT2Config(n_position=64, n_layer=2, n_head=4)
|
||||
|
||||
# register the following models
|
||||
model_zoo.register(name='transformers_gpt',
|
||||
model_fn=lambda: transformers.GPT2Model(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_gpt_lm',
|
||||
model_fn=lambda: transformers.GPT2LMHeadModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_gpt_double_heads',
|
||||
model_fn=lambda: transformers.GPT2DoubleHeadsModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_gpt_for_token_classification',
|
||||
model_fn=lambda: transformers.GPT2ForTokenClassification(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_gpt_for_sequence_classification',
|
||||
model_fn=lambda: transformers.GPT2ForSequenceClassification(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
35
tests/kit/model_zoo/transformers/opt.py
Normal file
35
tests/kit/model_zoo/transformers/opt.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence OPT
|
||||
# ===============================
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
|
||||
|
||||
def data_gen():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
||||
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
config = transformers.OPTConfig(hidden_size=128, num_hidden_layers=2, num_attention_heads=4)
|
||||
|
||||
# register the following models
|
||||
# transformers.OPTModel,
|
||||
# transformers.OPTForCausalLM,
|
||||
model_zoo.register(name='transformers_opt',
|
||||
model_fn=lambda: transformers.OPTModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_opt_for_causal_lm',
|
||||
model_fn=lambda: transformers.OPTForCausalLM(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
46
tests/kit/model_zoo/transformers/t5.py
Normal file
46
tests/kit/model_zoo/transformers/t5.py
Normal file
@@ -0,0 +1,46 @@
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence T5
|
||||
# ===============================
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
|
||||
|
||||
def data_gen():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
decoder_input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
||||
|
||||
|
||||
def data_gen_for_encoder_only():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids)
|
||||
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
config = transformers.T5Config(d_model=128, num_layers=2)
|
||||
|
||||
# register the following models
|
||||
# transformers.T5Model,
|
||||
# transformers.T5ForConditionalGeneration,
|
||||
# transformers.T5EncoderModel,
|
||||
model_zoo.register(name='transformers_t5',
|
||||
model_fn=lambda: transformers.T5Model(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_t5_for_conditional_generation',
|
||||
model_fn=lambda: transformers.T5ForConditionalGeneration(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_t5_encoder_model',
|
||||
model_fn=lambda: transformers.T5EncoderModel(config),
|
||||
data_gen_fn=data_gen_for_encoder_only,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
Reference in New Issue
Block a user