mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-07-31 15:25:21 +00:00
fix reward
This commit is contained in:
parent
d4a6b6c4a7
commit
6fff36dd63
@ -127,7 +127,9 @@ class GRPOConsumer(BaseConsumer):
|
||||
)
|
||||
# Initialize verifiable reward.
|
||||
reward_model_kwargs = {
|
||||
k: v for k, v in grpo_config.items() if k in ["soft_over_length_punishment", "max_length", "cache_length"]
|
||||
k: v
|
||||
for k, v in grpo_config.items()
|
||||
if k in ["soft_over_length_punishment", "max_new_tokens", "cache_length"]
|
||||
}
|
||||
self.reward_model = VerifiableReward(
|
||||
reward_fns=[
|
||||
|
@ -93,7 +93,7 @@ class BaseProducer:
|
||||
)
|
||||
|
||||
self.eval_dataset_config = eval_dataset_config
|
||||
if self.eval_dataset_config is not None:
|
||||
if self.eval_dataset_config is not None and self.eval_interval > 0:
|
||||
self.eval_dataloaders = {}
|
||||
for eval_task_name in self.eval_dataset_config:
|
||||
eval_dataset_path = eval_dataset_config[eval_task_name].pop("path")
|
||||
|
@ -81,12 +81,8 @@ def math_reward_fn(input_ids, gt_answer, response_idx, **kwargs):
|
||||
s, e = response_idx[0], response_idx[1]
|
||||
|
||||
length_reward = 0.0
|
||||
if soft_over_length_punishment:
|
||||
max_length = kwargs.get("max_length", 1024 * 4)
|
||||
cache_length = kwargs.get("cache_length", 512)
|
||||
res_length = e.item() - s.item() + 1
|
||||
if max_length - cache_length < res_length < max_length:
|
||||
length_reward = ((max_length - cache_length) - res_length) / cache_length * acc_score
|
||||
max_new_tokens = kwargs["max_new_tokens"]
|
||||
res_length = e.item() - s.item() + 1
|
||||
|
||||
if gt_answer is None:
|
||||
return reward
|
||||
@ -105,7 +101,16 @@ def math_reward_fn(input_ids, gt_answer, response_idx, **kwargs):
|
||||
if format_valid and final_answer is not None:
|
||||
reward, ans_acc = verify_model_answer(decoded_final_answer, gt_answer, ans_acc, acc_score, reward)
|
||||
|
||||
reward = reward + length_reward
|
||||
if soft_over_length_punishment:
|
||||
cache_length = kwargs.get("cache_length", 512)
|
||||
if max_new_tokens - cache_length < res_length:
|
||||
length_reward = ((max_new_tokens - cache_length) - res_length) / cache_length * acc_score
|
||||
reward = reward + length_reward
|
||||
if res_length >= max_new_tokens:
|
||||
# no reward for over length
|
||||
print(f"Overlength response detected: res_len: {e.item()-s.item()+1}, limit:{max_new_tokens}")
|
||||
reward *= 0.0
|
||||
format_acc *= 0.0
|
||||
|
||||
if not eval_mode:
|
||||
return torch.tensor([reward, format_acc, ans_acc]).to(input_ids.device)
|
||||
@ -133,12 +138,8 @@ def boxed_math_reward_fn(input_ids, gt_answer, response_idx, **kwargs):
|
||||
s, e = response_idx[0], response_idx[1]
|
||||
|
||||
length_reward = 0.0
|
||||
if soft_over_length_punishment:
|
||||
max_length = kwargs.get("max_length", 1024 * 4)
|
||||
cache_length = kwargs.get("cache_length", 512)
|
||||
res_length = e.item() - s.item() + 1
|
||||
if max_length - cache_length < res_length < max_length:
|
||||
length_reward = ((max_length - cache_length) - res_length) / cache_length * acc_score
|
||||
max_new_tokens = kwargs["max_new_tokens"]
|
||||
res_length = e.item() - s.item() + 1
|
||||
|
||||
if gt_answer is None:
|
||||
return torch.tensor([reward, format_acc, ans_acc]).to(input_ids.device)
|
||||
@ -161,8 +162,17 @@ def boxed_math_reward_fn(input_ids, gt_answer, response_idx, **kwargs):
|
||||
# Check answer accuracy, answer is considered correct if the answer is correct and the format is valid
|
||||
if format_valid and final_answer is not None:
|
||||
reward, ans_acc = verify_model_answer(decoded_final_answer, gt_answer, ans_acc, acc_score, reward)
|
||||
if soft_over_length_punishment:
|
||||
cache_length = kwargs.get("cache_length", 512)
|
||||
if max_new_tokens - cache_length < res_length:
|
||||
length_reward = ((max_new_tokens - cache_length) - res_length) / cache_length * acc_score
|
||||
reward = reward + length_reward
|
||||
if res_length >= max_new_tokens:
|
||||
# no reward for over length
|
||||
print(f"Overlength response detected: res_len: {e.item()-s.item()+1}, limit:{max_new_tokens}")
|
||||
reward *= 0.0
|
||||
format_acc *= 0.0
|
||||
|
||||
reward = reward + length_reward
|
||||
if not eval_mode:
|
||||
return torch.tensor([reward, format_acc, ans_acc]).to(input_ids.device)
|
||||
else:
|
||||
|
@ -199,6 +199,7 @@ if __name__ == "__main__":
|
||||
"beta": args.kl_coeff, # KL penalty coefficient
|
||||
"loss_variation": "sample_level",
|
||||
"reward_fn_type": args.reward_type,
|
||||
"max_new_tokens": args.max_new_tokens,
|
||||
}
|
||||
elif args.algo == "DAPO":
|
||||
# DAPO variant settings
|
||||
@ -213,7 +214,7 @@ if __name__ == "__main__":
|
||||
"beta": 0, # no KL penalty for DAPO
|
||||
"loss_variation": "token_level",
|
||||
"soft_over_length_punishment": True,
|
||||
"max_length": args.max_new_tokens + args.max_prompt_tokens,
|
||||
"max_new_tokens": args.max_new_tokens,
|
||||
"cache_length": min(1024, int(args.max_new_tokens / 4)),
|
||||
"filter_truncated_response": True,
|
||||
"reward_fn_type": args.reward_type,
|
||||
|
Loading…
Reference in New Issue
Block a user