[tensor] use communication autograd func (#1617)

* [tensor] use communication autograd func

* change all to all comm spec info

* rename pattern and distinguish fwd/bwd

* polish code
This commit is contained in:
YuliangLiu0306 2022-09-23 13:31:15 +08:00 committed by GitHub
parent c7ac0f4ab2
commit 702dbc5288
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 348 additions and 109 deletions

View File

@ -8,6 +8,7 @@ import warnings
from functools import reduce from functools import reduce
import functools import functools
import operator import operator
from .constants import INFINITY_COST
def generate_sharding_spec(input_: Union[Node, torch.Tensor], device_mesh: DeviceMesh, def generate_sharding_spec(input_: Union[Node, torch.Tensor], device_mesh: DeviceMesh,
@ -68,19 +69,16 @@ def generate_resharding_costs(nodes: List[Node],
for strategy in input_node.strategies_vector: for strategy in input_node.strategies_vector:
input_sharding_spec = strategy.output_sharding_spec input_sharding_spec = strategy.output_sharding_spec
assert isinstance(input_sharding_spec, ShardingSpec), f'The input node should NOT be a tuple of tensor.' assert isinstance(input_sharding_spec, ShardingSpec), f'The input node should NOT be a tuple of tensor.'
# compute the resharding cost during forward phase try:
_, _, resharding_cost_forward = shape_consistency_manager.shape_consistency(input_sharding_spec, input_spec) # compute the resharding cost
_, _, total_resharding_cost = shape_consistency_manager.shape_consistency(
input_sharding_spec, input_spec)
if count_backward: # we need multiply the size of elem dtype to get correct communication cost
# In backward phase, we should convert grad with target_spec into input_sharding_spec resharding_cost = total_resharding_cost * size_per_elem_bytes
_, _, resharding_cost_backward = shape_consistency_manager.shape_consistency( except AssertionError as e:
input_spec, input_sharding_spec) warnings.warn(f'{e}')
total_resharding_cost = resharding_cost_forward + resharding_cost_backward resharding_cost = INFINITY_COST
else:
total_resharding_cost = resharding_cost_forward
# we need multiply the size of elem dtype to get correct communication cost
resharding_cost = total_resharding_cost * size_per_elem_bytes
resharding_costs[input_node].append(resharding_cost) resharding_costs[input_node].append(resharding_cost)
return resharding_costs return resharding_costs

View File

@ -4,7 +4,7 @@ import operator
__all__ = [ __all__ = [
'ELEMENTWISE_MODULE_OP', 'ELEMENTWISE_FUNC_OP', 'RESHAPE_FUNC_OP', 'CONV_MODULE_OP', 'CONV_FUNC_OP', 'ELEMENTWISE_MODULE_OP', 'ELEMENTWISE_FUNC_OP', 'RESHAPE_FUNC_OP', 'CONV_MODULE_OP', 'CONV_FUNC_OP',
'LINEAR_MODULE_OP', 'LINEAR_FUNC_OP', 'BATCHNORM_MODULE_OP', 'POOL_MODULE_OP', 'NON_PARAM_FUNC_OP', 'BCAST_FUNC_OP', 'LINEAR_MODULE_OP', 'LINEAR_FUNC_OP', 'BATCHNORM_MODULE_OP', 'POOL_MODULE_OP', 'NON_PARAM_FUNC_OP', 'BCAST_FUNC_OP',
'EMBEDDING_MODULE_OP', 'LAYERNORM_MODULE_OP', 'ELEMENTWISE_METHOD_OP', 'RESHAPE_METHOD_OP' 'EMBEDDING_MODULE_OP', 'LAYERNORM_MODULE_OP', 'ELEMENTWISE_METHOD_OP', 'RESHAPE_METHOD_OP', 'INFINITY_COST'
] ]
ELEMENTWISE_MODULE_OP = [torch.nn.Dropout, torch.nn.ReLU] ELEMENTWISE_MODULE_OP = [torch.nn.Dropout, torch.nn.ReLU]

View File

@ -18,11 +18,225 @@ __all__ = [
] ]
def _all_gather(tensor, comm_spec):
'''
Implement all gather operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
tensor_list = [
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device)
for _ in range(comm_spec.device_mesh.mesh_shape[comm_spec.logical_process_axis])
]
tensor = tensor
group = process_group
dist.all_gather(tensor_list, tensor, group=group)
output = torch.cat(tuple(tensor_list), comm_spec.gather_dim).contiguous()
return output
def _split(tensor, comm_spec):
'''
Implement shard operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, _ in process_groups_list:
if dist.get_rank() in rank_list:
tensor = tensor
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
start = length * rank_list.index(dist.get_rank())
output = torch.narrow(tensor, dim, start, length)
return output
def _all_to_all(tensor, comm_spec):
'''
Implement all to all operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
new_shape = list(tensor.shape)
new_shape[comm_spec.shard_dim] = new_shape[comm_spec.shard_dim] // len(rank_list)
new_shape = torch.Size(new_shape)
output_tensor_list = [
torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(len(rank_list))
]
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
input_tensor_list = [
torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(len(rank_list))
]
group = process_group
dist.all_to_all(output_tensor_list, input_tensor_list, group)
output = torch.cat(tuple(output_tensor_list), comm_spec.gather_dim).contiguous()
return output
def _all_reduce(tensor, comm_spec):
'''
Implement all reduce operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.device_mesh.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group)
return tensor
class _ReduceGrad(torch.autograd.Function):
"""
A customized communication operation which forward is an identity operation,
backward is all_reduce operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return input_
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return input_
@staticmethod
def backward(ctx, grad_output):
return _all_reduce(grad_output, ctx.comm_spec), None
class _ReduceInput(torch.autograd.Function):
"""
A customized communication operation which forward is all_reduce operation,
backward is an identity operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _all_reduce(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
return _all_reduce(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
class _SplitForwardGatherBackward(torch.autograd.Function):
"""
A customized communication operation which forward is split operation,
backward is an all gather operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _split(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return _split(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return _all_gather(grad_output, ctx.comm_spec), None
class _GatherForwardSplitBackward(torch.autograd.Function):
"""
A customized communication operation which forward is an all gather operation,
backward is split operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _all_gather(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return _all_gather(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output, ctx.comm_spec), None
class _AllToAll(torch.autograd.Function):
"""
A customized communication operation which forward is an all to all operation,
backward is an all to all operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _all_to_all(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
output = _all_to_all(input_, comm_spec)
comm_spec_for_backward = CommSpec(comm_pattern=comm_spec.comm_pattern,
sharding_spec=comm_spec.sharding_spec,
gather_dim=comm_spec.shard_dim,
shard_dim=comm_spec.gather_dim,
logical_process_axis=comm_spec.logical_process_axis)
ctx.comm_spec = comm_spec_for_backward
return output
@staticmethod
def backward(ctx, grad_outputs):
return _all_to_all(grad_outputs, ctx.comm_spec), None
def reduce_grad(input_, comm_spec):
return _ReduceGrad.apply(input_, comm_spec)
def reduce_input(input_, comm_spec):
return _ReduceInput.apply(input_, comm_spec)
def split_forward_gather_backward(input_, comm_spec):
return _SplitForwardGatherBackward.apply(input_, comm_spec)
def gather_forward_split_backward(input_, comm_spec):
return _GatherForwardSplitBackward.apply(input_, comm_spec)
def all_to_all(input_, comm_spec):
return _AllToAll.apply(input_, comm_spec)
class CollectiveCommPattern(Enum): class CollectiveCommPattern(Enum):
ALLGATHER = 'all_gather' GATHER_FWD_SPLIT_BWD = 'gather_fwd_split_bwd'
ALLTOALL = 'all_to_all' ALL2ALL_FWD_ALL2ALL_BWD = 'all2all_fwd_all2all_bwd'
SHARD = 'shard' SPLIT_FWD_GATHER_BWD = 'split_fwd_gather_bwd'
ALLREDUCE = 'all_reduce' REDUCE_FWD_IDENTITY_BWD = 'all_reduce_fwd_identity_bwd'
IDENTITY_FWD_ALLREDUCE_BWD = 'identity_fwd_all_reduce_bwd'
class CommSpec: class CommSpec:
@ -42,12 +256,19 @@ class CommSpec:
logical_process_axis(Union(int, List[int]), Optional): The mesh_dim to implement the communication action. logical_process_axis(Union(int, List[int]), Optional): The mesh_dim to implement the communication action.
''' '''
def __init__(self, comm_pattern, sharding_spec, gather_dim=None, shard_dim=None, logical_process_axis=None): def __init__(self,
comm_pattern,
sharding_spec,
gather_dim=None,
shard_dim=None,
logical_process_axis=None,
forward_only=False):
self.comm_pattern = comm_pattern self.comm_pattern = comm_pattern
self.sharding_spec = sharding_spec self.sharding_spec = sharding_spec
self.gather_dim = gather_dim self.gather_dim = gather_dim
self.shard_dim = shard_dim self.shard_dim = shard_dim
self.logical_process_axis = logical_process_axis self.logical_process_axis = logical_process_axis
self.forward_only = forward_only
if isinstance(self.logical_process_axis, list): if isinstance(self.logical_process_axis, list):
self.device_mesh = self.sharding_spec.device_mesh.flatten_device_mesh self.device_mesh = self.sharding_spec.device_mesh.flatten_device_mesh
self.logical_process_axis = 0 self.logical_process_axis = 0
@ -56,21 +277,24 @@ class CommSpec:
def __repr__(self): def __repr__(self):
res_list = ["CommSpec:("] res_list = ["CommSpec:("]
if self.comm_pattern == CollectiveCommPattern.ALLGATHER: if self.comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD:
res_list.append(f"comm_pattern:all_gather, ") res_list.append(f"comm_pattern:GATHER_FWD_SPLIT_BWD, ")
res_list.append(f"gather_dim:{self.gather_dim}, ") res_list.append(f"gather_dim:{self.gather_dim}, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})") res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.ALLTOALL: elif self.comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD:
res_list.append(f"comm_pattern:all2all, ") res_list.append(f"comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, ")
res_list.append(f"gather_dim:{self.gather_dim}, ") res_list.append(f"gather_dim:{self.gather_dim}, ")
res_list.append(f"shard_dim:{self.shard_dim}, ") res_list.append(f"shard_dim:{self.shard_dim}, ")
res_list.append(f"logical_process_axis: {self.logical_process_axis})") res_list.append(f"logical_process_axis: {self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.SHARD: elif self.comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD:
res_list.append(f"comm_pattern:shard, ") res_list.append(f"comm_pattern:SPLIT_FWD_GATHER_BWD, ")
res_list.append(f"shard_dim:{self.shard_dim}, ") res_list.append(f"shard_dim:{self.shard_dim}, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})") res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.ALLREDUCE: elif self.comm_pattern == CollectiveCommPattern.REDUCE_FWD_IDENTITY_BWD:
res_list.append(f"comm_pattern:all_reduce, ") res_list.append(f"comm_pattern:REDUCE_FWD_IDENTITY_BWD, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD:
res_list.append(f"comm_pattern:IDENTITY_FWD_ALLREDUCE_BWD, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})") res_list.append(f"logical_process_axis:{self.logical_process_axis})")
return ''.join(res_list) return ''.join(res_list)
@ -82,16 +306,38 @@ class CommSpec:
For shard operation, it is an on-chip operation, so the communication cost is zero. For shard operation, it is an on-chip operation, so the communication cost is zero.
''' '''
comm_size = reduce(operator.mul, self.sharding_spec.get_sharded_shape_per_device(), 1) comm_size = reduce(operator.mul, self.sharding_spec.get_sharded_shape_per_device(), 1)
if self.comm_pattern == CollectiveCommPattern.ALLGATHER: if self.comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD:
return self.device_mesh.all_gather_cost(comm_size, self.logical_process_axis) forward_communication_cost = self.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
if self.comm_pattern == CollectiveCommPattern.ALLTOALL:
return self.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
if self.comm_pattern == CollectiveCommPattern.ALLREDUCE:
return self.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis)
if self.comm_pattern == CollectiveCommPattern.SHARD:
# give a tiny cost to shard # give a tiny cost to shard
return 10 backward_communication_cost = 10
raise RuntimeError(f"Could not find a matching CollectiveCommPattern for {self.comm_pattern}.")
if self.comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD:
forward_communication_cost = self.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
# grad should have same shape as input tensor
# all to all operation has same logical process axis as forward.
backward_communication_cost = self.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
if self.comm_pattern == CollectiveCommPattern.REDUCE_FWD_IDENTITY_BWD:
forward_communication_cost = self.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis)
backward_communication_cost = 0
if self.comm_pattern == CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD:
forward_communication_cost = 0
backward_communication_cost = self.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis)
if self.comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD:
# give a tiny cost to shard
forward_communication_cost = 10
backward_communication_cost = self.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
try:
if self.forward_only:
total_communication_cost = forward_communication_cost
else:
total_communication_cost = forward_communication_cost + backward_communication_cost
except:
raise RuntimeError(f"Could not find a matching CollectiveCommPattern for {self.comm_pattern}.")
return total_communication_cost
def covert_spec_to_action(self, tensor): def covert_spec_to_action(self, tensor):
''' '''
@ -101,64 +347,21 @@ class CommSpec:
Argument: Argument:
tensor(torch.Tensor): Tensor stored in each device, which could be different in different ranks. tensor(torch.Tensor): Tensor stored in each device, which could be different in different ranks.
''' '''
process_groups_list = self.device_mesh.process_groups_dict[self.logical_process_axis] if self.comm_pattern in pattern_to_func_dict:
tensor.data = pattern_to_func_dict[self.comm_pattern](tensor, self)
if self.comm_pattern == CollectiveCommPattern.ALLGATHER:
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
tensor_list = [
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device)
for _ in range(self.device_mesh.mesh_shape[self.logical_process_axis])
]
tensor = tensor
group = process_group
dist.all_gather(tensor_list, tensor, group=group)
tensor.data = torch.cat(tuple(tensor_list), self.gather_dim)
elif self.comm_pattern == CollectiveCommPattern.SHARD:
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
tensor = tensor
dim = self.shard_dim
length = tensor.shape[self.shard_dim] // len(rank_list)
start = length * rank_list.index(dist.get_rank())
tensor.data = torch.narrow(tensor, dim, start, length)
elif self.comm_pattern == CollectiveCommPattern.ALLTOALL:
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
new_shape = list(tensor.shape)
new_shape[self.shard_dim] = new_shape[self.shard_dim] // len(rank_list)
new_shape = torch.Size(new_shape)
output_tensor_list = [
torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(len(rank_list))
]
dim = self.shard_dim
length = tensor.shape[self.shard_dim] // len(rank_list)
input_tensor_list = [
torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(len(rank_list))
]
group = process_group
dist.all_to_all(output_tensor_list, input_tensor_list, group)
tensor.data = torch.cat(tuple(output_tensor_list), self.gather_dim)
elif self.comm_pattern == CollectiveCommPattern.ALLREDUCE:
# For the consistency of collective communication operation, we temporally do not
# allow all_reduce two different mesh dimensions in the same time.
# e.g.: MatMul[(R, S01), (S01, R)] -> Partial(R, R),
# all_reduce(Partial, logical_pg=(0, 1)) is NOT allowed, instead
# we need to do this in two steps:
# 1. all_reduce(Partial, logical_pg=1)
# 2. all_reduce(Partial, logical_pg=0)
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group)
tensor.data = tensor
else: else:
tensor.data = tensor tensor.data = tensor
pattern_to_func_dict = {
CollectiveCommPattern.GATHER_FWD_SPLIT_BWD: gather_forward_split_backward,
CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD: all_to_all,
CollectiveCommPattern.SPLIT_FWD_GATHER_BWD: split_forward_gather_backward,
CollectiveCommPattern.REDUCE_FWD_IDENTITY_BWD: reduce_input,
CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD: reduce_grad,
}
@dataclass @dataclass
class ShapeConsistencyOptions: class ShapeConsistencyOptions:
""" """
@ -180,6 +383,7 @@ class ShapeConsistencyManager(metaclass=SingletonMeta):
def __init__(self): def __init__(self):
self._options = None self._options = None
self._forward_only = False
self.total_communication_cost = 0 self.total_communication_cost = 0
self.total_transform_steps = 0 self.total_transform_steps = 0
self.cached_spec_pairs_transform_path = {} self.cached_spec_pairs_transform_path = {}
@ -193,6 +397,15 @@ class ShapeConsistencyManager(metaclass=SingletonMeta):
assert isinstance(options_, ShapeConsistencyOptions) assert isinstance(options_, ShapeConsistencyOptions)
self._options = options_ self._options = options_
@property
def forward_only(self):
return self._forward_only
@forward_only.setter
def forward_only(self, value):
assert isinstance(value, bool)
self._forward_only = value
def get_all_all_gather_spec(self, source_spec, orig_cost): def get_all_all_gather_spec(self, source_spec, orig_cost):
''' '''
Get all valid sharding specs from source_spec with single all-gather operation, and Get all valid sharding specs from source_spec with single all-gather operation, and
@ -224,7 +437,7 @@ class ShapeConsistencyManager(metaclass=SingletonMeta):
device_mesh_shape: (4, 4): 0} device_mesh_shape: (4, 4): 0}
''' '''
valid_spec_dict = {} valid_spec_dict = {}
comm_pattern = CollectiveCommPattern.ALLGATHER comm_pattern = CollectiveCommPattern.GATHER_FWD_SPLIT_BWD
for target_pair in source_spec.dim_partition_dict.items(): for target_pair in source_spec.dim_partition_dict.items():
shard_list = all_gather_simulator(target_pair) shard_list = all_gather_simulator(target_pair)
index = target_pair[0] index = target_pair[0]
@ -240,10 +453,14 @@ class ShapeConsistencyManager(metaclass=SingletonMeta):
# generate the CommSpec to record the action of source_sharding_spec->new_sharding_spec # generate the CommSpec to record the action of source_sharding_spec->new_sharding_spec
gather_dim = index gather_dim = index
logical_process_axis = target_pair[1][-1] logical_process_axis = target_pair[1][-1]
comm_spec = CommSpec(comm_pattern, comm_spec = CommSpec(
sharding_spec=source_spec, comm_pattern,
gather_dim=gather_dim, sharding_spec=source_spec,
logical_process_axis=logical_process_axis) gather_dim=gather_dim,
# shard_dim will be used during backward
shard_dim=gather_dim,
logical_process_axis=logical_process_axis,
forward_only=self.forward_only)
# compute the communication cost with CommSpec # compute the communication cost with CommSpec
cost = comm_spec.get_comm_cost() cost = comm_spec.get_comm_cost()
@ -288,7 +505,7 @@ class ShapeConsistencyManager(metaclass=SingletonMeta):
device_mesh_shape: (4, 4): 0} device_mesh_shape: (4, 4): 0}
''' '''
valid_spec_dict = {} valid_spec_dict = {}
comm_pattern = CollectiveCommPattern.ALLTOALL comm_pattern = CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD
tensor_dims = len(source_spec.entire_shape) tensor_dims = len(source_spec.entire_shape)
for f_index in range(tensor_dims - 1): for f_index in range(tensor_dims - 1):
for b_index in range(f_index + 1, tensor_dims): for b_index in range(f_index + 1, tensor_dims):
@ -331,7 +548,8 @@ class ShapeConsistencyManager(metaclass=SingletonMeta):
sharding_spec=source_spec, sharding_spec=source_spec,
gather_dim=gather_dim, gather_dim=gather_dim,
shard_dim=shard_dim, shard_dim=shard_dim,
logical_process_axis=logical_process_axis) logical_process_axis=logical_process_axis,
forward_only=self.forward_only)
# compute the communication cost with CommSpec # compute the communication cost with CommSpec
cost = comm_spec.get_comm_cost() cost = comm_spec.get_comm_cost()
@ -388,7 +606,7 @@ class ShapeConsistencyManager(metaclass=SingletonMeta):
device_mesh_shape: (4, 4): 0} device_mesh_shape: (4, 4): 0}
''' '''
valid_spec_dict = {} valid_spec_dict = {}
comm_pattern = CollectiveCommPattern.SHARD comm_pattern = CollectiveCommPattern.SPLIT_FWD_GATHER_BWD
# legal sharding dims means the mesh_id is still available to use. # legal sharding dims means the mesh_id is still available to use.
legal_sharding_dims = [i for i in range(len(source_spec.device_mesh.mesh_shape))] legal_sharding_dims = [i for i in range(len(source_spec.device_mesh.mesh_shape))]
@ -415,8 +633,10 @@ class ShapeConsistencyManager(metaclass=SingletonMeta):
logical_process_axis = shard_list[-1] logical_process_axis = shard_list[-1]
comm_spec = CommSpec(comm_pattern, comm_spec = CommSpec(comm_pattern,
sharding_spec=source_spec, sharding_spec=source_spec,
gather_dim=shard_dim,
shard_dim=shard_dim, shard_dim=shard_dim,
logical_process_axis=logical_process_axis) logical_process_axis=logical_process_axis,
forward_only=self.forward_only)
# compute the communication cost with CommSpec # compute the communication cost with CommSpec
cost = comm_spec.get_comm_cost() cost = comm_spec.get_comm_cost()

View File

@ -33,7 +33,10 @@ def check_all_gather(device_mesh, rank):
sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict) sharding_spec = ShardingSpec(device_mesh, tensor_to_check.shape, dim_partition_dict=dim_partition_dict)
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1) # CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1)
comm_spec = CommSpec(CollectiveCommPattern.ALLGATHER, sharding_spec, gather_dim=1, logical_process_axis=1) comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
sharding_spec,
gather_dim=1,
logical_process_axis=1)
comm_spec.covert_spec_to_action(sharded_tensor_to_comm) comm_spec.covert_spec_to_action(sharded_tensor_to_comm)
assert sharded_tensor_to_comm.equal(tensor_to_check) assert sharded_tensor_to_comm.equal(tensor_to_check)
@ -56,7 +59,7 @@ def check_shard(device_mesh, rank):
sharding_spec = ShardingSpec(device_mesh, tensor_to_shard.shape, dim_partition_dict=dim_partition_dict) sharding_spec = ShardingSpec(device_mesh, tensor_to_shard.shape, dim_partition_dict=dim_partition_dict)
# CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1) # CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1)
comm_spec = CommSpec(CollectiveCommPattern.SHARD, sharding_spec, shard_dim=1, logical_process_axis=1) comm_spec = CommSpec(CollectiveCommPattern.SPLIT_FWD_GATHER_BWD, sharding_spec, shard_dim=1, logical_process_axis=1)
comm_spec.covert_spec_to_action(tensor_to_shard) comm_spec.covert_spec_to_action(tensor_to_shard)
if rank in (0, 2): if rank in (0, 2):
@ -102,7 +105,7 @@ def check_all_to_all(device_mesh, rank):
sharding_spec = ShardingSpec(device_mesh, torch.Size((4, 2)), dim_partition_dict=dim_partition_dict) sharding_spec = ShardingSpec(device_mesh, torch.Size((4, 2)), dim_partition_dict=dim_partition_dict)
# CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1) # CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1)
comm_spec = CommSpec(CollectiveCommPattern.ALLTOALL, comm_spec = CommSpec(CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD,
sharding_spec, sharding_spec,
gather_dim=0, gather_dim=0,
shard_dim=1, shard_dim=1,
@ -112,7 +115,7 @@ def check_all_to_all(device_mesh, rank):
assert tensor_to_comm.equal(tensor_to_check) assert tensor_to_comm.equal(tensor_to_check)
def check_all_reduce(device_mesh, rank): def check_all_reduce_fwd(device_mesh, rank):
# tensor to comm # tensor to comm
tensor_to_comm = torch.ones(2, 2).cuda() * rank tensor_to_comm = torch.ones(2, 2).cuda() * rank
@ -133,8 +136,25 @@ def check_all_reduce(device_mesh, rank):
# device_mesh_shape: (2, 2) # device_mesh_shape: (2, 2)
sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict) sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict)
# CommSpec:(comm_pattern:all_reduce, logical_process_axis:0) comm_spec = CommSpec(CollectiveCommPattern.REDUCE_FWD_IDENTITY_BWD, sharding_spec, logical_process_axis=0)
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE, sharding_spec, logical_process_axis=0) comm_spec.covert_spec_to_action(tensor_to_comm)
assert tensor_to_comm.equal(tensor_to_check)
def check_all_reduce_bwd(device_mesh, rank):
# tensor to comm
tensor_to_comm = torch.ones(2, 2).cuda() * rank
tensor_to_check = torch.ones(2, 2).cuda() * rank
dim_partition_dict = {}
# DistSpec:
# shard_sequence: R,R
# device_mesh_shape: (2, 2)
sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict)
comm_spec = CommSpec(CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD, sharding_spec, logical_process_axis=0)
comm_spec.covert_spec_to_action(tensor_to_comm) comm_spec.covert_spec_to_action(tensor_to_comm)
assert tensor_to_comm.equal(tensor_to_check) assert tensor_to_comm.equal(tensor_to_check)
@ -157,7 +177,7 @@ def check_all_reduce_in_flatten_device_mesh(device_mesh, rank):
sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict) sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict)
# CommSpec:(comm_pattern:all_reduce, logical_process_axis:[0, 1]) # CommSpec:(comm_pattern:all_reduce, logical_process_axis:[0, 1])
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE, sharding_spec, logical_process_axis=[0, 1]) comm_spec = CommSpec(CollectiveCommPattern.REDUCE_FWD_IDENTITY_BWD, sharding_spec, logical_process_axis=[0, 1])
comm_spec.covert_spec_to_action(tensor_to_comm) comm_spec.covert_spec_to_action(tensor_to_comm)
assert tensor_to_comm.equal(tensor_to_check) assert tensor_to_comm.equal(tensor_to_check)
@ -184,7 +204,8 @@ def check_comm(rank, world_size, port):
check_all_to_all(device_mesh, rank) check_all_to_all(device_mesh, rank)
# test all reduce # test all reduce
check_all_reduce(device_mesh, rank) check_all_reduce_fwd(device_mesh, rank)
check_all_reduce_bwd(device_mesh, rank)
# test all reduce in 1D flatten device mesh # test all reduce in 1D flatten device mesh
check_all_reduce_in_flatten_device_mesh(device_mesh, rank) check_all_reduce_in_flatten_device_mesh(device_mesh, rank)

View File

@ -106,18 +106,18 @@ def test_shape_consistency():
assert transform_path_str == '[R, S01, R]->[R, S0, R]->[S0, R, R]->[S01, R, R]' assert transform_path_str == '[R, S01, R]->[R, S0, R]->[S0, R, R]->[S01, R, R]'
# all-gather(S01) -> S0 # all-gather(S01) -> S0
assert comm_action_sequence[0].comm_pattern == CollectiveCommPattern.ALLGATHER assert comm_action_sequence[0].comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD
assert comm_action_sequence[0].gather_dim == 1 assert comm_action_sequence[0].gather_dim == 1
assert comm_action_sequence[0].logical_process_axis == 1 assert comm_action_sequence[0].logical_process_axis == 1
# all-to-all(R, S0) -> [S0, R] # all-to-all(R, S0) -> [S0, R]
assert comm_action_sequence[1].comm_pattern == CollectiveCommPattern.ALLTOALL assert comm_action_sequence[1].comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD
assert comm_action_sequence[1].gather_dim == 1 assert comm_action_sequence[1].gather_dim == 1
assert comm_action_sequence[1].shard_dim == 0 assert comm_action_sequence[1].shard_dim == 0
assert comm_action_sequence[1].logical_process_axis == 0 assert comm_action_sequence[1].logical_process_axis == 0
# shard(S0) -> [S01] # shard(S0) -> [S01]
assert comm_action_sequence[2].comm_pattern == CollectiveCommPattern.SHARD assert comm_action_sequence[2].comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD
assert comm_action_sequence[2].shard_dim == 0 assert comm_action_sequence[2].shard_dim == 0
assert comm_action_sequence[2].logical_process_axis == 1 assert comm_action_sequence[2].logical_process_axis == 1