mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-10 21:40:02 +00:00
@@ -130,7 +130,7 @@ def _test_evoformer_codegen(rank, msa_len, pair_len, max_memory):
|
||||
},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# assert we have inserted chunk
|
||||
|
164
tests/test_autochunk/test_extramsa_codegen.py
Normal file
164
tests/test_autochunk/test_extramsa_codegen.py
Normal file
@@ -0,0 +1,164 @@
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.fx
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from fastfold.model.nn.evoformer import ExtraMSABlock
|
||||
HAS_REPO = True
|
||||
except:
|
||||
HAS_REPO = False
|
||||
|
||||
import colossalai
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx._compatibility import is_compatible_with_meta
|
||||
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if CODEGEN_AVAILABLE and is_compatible_with_meta():
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
||||
|
||||
|
||||
def _test_fwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair, node_mask, pair_mask):
|
||||
# for memory test
|
||||
# model = model.cuda()
|
||||
# torch.cuda.reset_peak_memory_stats()
|
||||
# now_mem = torch.cuda.memory_allocated() / 1024**2
|
||||
# with torch.no_grad():
|
||||
# node1 = node.clone()
|
||||
# pair1 = pair.clone()
|
||||
# node_mask1 = node_mask.clone()
|
||||
# pair_mask1 = pair_mask.clone()
|
||||
# gm(node1, pair1, node_mask1, pair_mask1)
|
||||
# new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
|
||||
# print("autochunk max mem:%.2f"% (new_max_mem - now_mem))
|
||||
|
||||
# test forward
|
||||
model = model.cuda()
|
||||
with torch.no_grad():
|
||||
non_fx_out = model(node, pair, node_mask, pair_mask)
|
||||
fx_out = gm(node, pair, node_mask, pair_mask)
|
||||
|
||||
assert torch.allclose(non_fx_out[0], fx_out[0],
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(non_fx_out[0] - fx_out[0]))
|
||||
assert torch.allclose(non_fx_out[1], fx_out[1],
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(non_fx_out[1] - fx_out[1]))
|
||||
|
||||
|
||||
def _build_openfold():
|
||||
model = ExtraMSABlock(
|
||||
c_m=256,
|
||||
c_z=128,
|
||||
c_hidden_msa_att=32,
|
||||
c_hidden_opm=32,
|
||||
c_hidden_mul=128,
|
||||
c_hidden_pair_att=32,
|
||||
no_heads_msa=8,
|
||||
no_heads_pair=4,
|
||||
transition_n=4,
|
||||
msa_dropout=0.15,
|
||||
pair_dropout=0.15,
|
||||
inf=1e4,
|
||||
eps=1e-4,
|
||||
ckpt=False,
|
||||
is_multimer=False,
|
||||
).eval().cuda()
|
||||
return model
|
||||
|
||||
|
||||
def _test_extramsa_codegen(rank, msa_len, pair_len, max_memory):
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=rank,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
# build model and input
|
||||
model = _build_openfold()
|
||||
node = torch.randn(1, msa_len, pair_len, 256).cuda()
|
||||
node_mask = torch.randn(1, msa_len, pair_len).cuda()
|
||||
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
|
||||
pair_mask = torch.randn(1, pair_len, pair_len).cuda()
|
||||
|
||||
# trace the meta graph and setup codegen
|
||||
meta_graph = symbolic_trace(
|
||||
model,
|
||||
meta_args={
|
||||
"m": node.to(torch.device("meta")),
|
||||
"z": pair.to(torch.device("meta")),
|
||||
"msa_mask": node_mask.to(torch.device("meta")),
|
||||
"pair_mask": pair_mask.to(torch.device("meta")),
|
||||
},
|
||||
concrete_args={
|
||||
"chunk_size": None,
|
||||
"_chunk_logits": 1024,
|
||||
},
|
||||
)
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
interp.propagate(
|
||||
MetaTensor(node, fake_device="cuda:0"),
|
||||
MetaTensor(pair, fake_device="cuda:0"),
|
||||
MetaTensor(node_mask, fake_device="cuda:0"),
|
||||
MetaTensor(pair_mask, fake_device="cuda:0"),
|
||||
)
|
||||
codegen = AutoChunkCodeGen(meta_graph, max_memory=max_memory, print_mem=False)
|
||||
|
||||
# trace and recompile
|
||||
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
||||
graph = ColoTracer().trace(
|
||||
model,
|
||||
meta_args={
|
||||
"m": node.to(torch.device("meta")),
|
||||
"z": pair.to(torch.device("meta")),
|
||||
"msa_mask": node_mask.to(torch.device("meta")),
|
||||
"pair_mask": pair_mask.to(torch.device("meta")),
|
||||
},
|
||||
concrete_args={
|
||||
"chunk_size": None,
|
||||
"_chunk_logits": 1024,
|
||||
},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# assert we have inserted chunk
|
||||
code = graph.python_code("self").src
|
||||
# print(code)
|
||||
assert "chunk_result = None; chunk_size = None;" in code
|
||||
|
||||
_test_fwd(model, gm, node, pair, node_mask, pair_mask)
|
||||
gpc.destroy()
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not (CODEGEN_AVAILABLE and is_compatible_with_meta() and HAS_REPO),
|
||||
reason="torch version is lower than 1.12.0",
|
||||
)
|
||||
@pytest.mark.parametrize("max_memory", [None, 24, 28, 32])
|
||||
@pytest.mark.parametrize("msa_len", [32])
|
||||
@pytest.mark.parametrize("pair_len", [64])
|
||||
def test_extramsa_codegen(msa_len, pair_len, max_memory):
|
||||
run_func = partial(
|
||||
_test_extramsa_codegen,
|
||||
msa_len=msa_len,
|
||||
pair_len=pair_len,
|
||||
max_memory=max_memory,
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_extramsa_codegen(0, 32, 64, None)
|
@@ -73,7 +73,7 @@ def _test_simple_evoformer_codegen(rank, msa_len, pair_len, max_memory):
|
||||
},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# assert we have inserted chunk
|
||||
|
@@ -13,6 +13,7 @@ except:
|
||||
|
||||
import colossalai
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx import symbolic_trace
|
||||
from colossalai.fx._compatibility import is_compatible_with_meta
|
||||
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
@@ -28,10 +29,10 @@ def assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len):
|
||||
|
||||
if msa_len == 32 and pair_len == 64:
|
||||
if max_memory is None:
|
||||
target_regions = [(142, 154), (366, 373), (233, 283), (301, 351), (127, 134), (204, 228), (167, 191),
|
||||
(161, 166), (198, 203), (6, 69)]
|
||||
target_regions = [(142, 154), (366, 373), (234, 283), (302, 351), (127, 134), (211, 228), (174, 191),
|
||||
(161, 166), (198, 203), (7, 57)]
|
||||
elif max_memory == 20:
|
||||
target_regions = [(142, 154), (369, 373), (233, 269), (301, 351)]
|
||||
target_regions = [(142, 154), (369, 373), (235, 269), (303, 351), (130, 131)]
|
||||
elif max_memory == 25:
|
||||
target_regions = [(144, 154), (369, 370)]
|
||||
elif max_memory == 30:
|
||||
@@ -41,25 +42,10 @@ def assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len):
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
assert len(found_regions) == len(
|
||||
target_regions), "len of found regions %s doesn't equal len of target regions %s" % (
|
||||
str(found_regions),
|
||||
str(target_regions),
|
||||
)
|
||||
for region in target_regions:
|
||||
assert (region in found_regions), "region:%s not in found regions for msa:%d, pair:%d, maxmem:%s" % (
|
||||
str(region),
|
||||
msa_len,
|
||||
pair_len,
|
||||
str(max_memory),
|
||||
)
|
||||
for region in found_regions:
|
||||
assert (region in target_regions), "region:%s should not be found for msa:%d, pair:%d, maxmem:%d" % (
|
||||
str(region),
|
||||
msa_len,
|
||||
pair_len,
|
||||
str(max_memory),
|
||||
)
|
||||
assert found_regions == target_regions, "found regions %s doesn't equal target regions %s" % (
|
||||
str(found_regions),
|
||||
str(target_regions),
|
||||
)
|
||||
|
||||
|
||||
def _test_simple_evoformer_search(rank, msa_len, pair_len, max_memory):
|
||||
@@ -78,11 +64,14 @@ def _test_simple_evoformer_search(rank, msa_len, pair_len, max_memory):
|
||||
node = torch.randn(1, msa_len, pair_len, 256).cuda()
|
||||
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
|
||||
|
||||
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
|
||||
interp = MetaInfoProp(gm_prop)
|
||||
meta_graph = symbolic_trace(model,
|
||||
meta_args={
|
||||
"node": node.to(torch.device("meta")),
|
||||
"pair": pair.to(torch.device("meta")),
|
||||
}) # must use symbolic_trace
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0"))
|
||||
|
||||
codegen = AutoChunkCodeGen(gm_prop, max_memory=max_memory)
|
||||
codegen = AutoChunkCodeGen(meta_graph, max_memory=max_memory)
|
||||
chunk_infos = codegen.chunk_infos
|
||||
assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len)
|
||||
|
||||
|
Reference in New Issue
Block a user