mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 20:40:34 +00:00
[Chat] fix the tokenizer "int too big to convert" error in SFT training (#3453)
* Add RoBERTa for RLHF Stage 2 & 3 (test) RoBERTa for RLHF Stage 2 & 3 (still in testing) * Revert "Add RoBERTa for RLHF Stage 2 & 3 (test)" This reverts commit06741d894d
. * Add RoBERTa for RLHF stage 2 & 3 1. add roberta folder under model folder 2. add roberta option in train_reward_model.py 3. add some test in testci * Update test_ci.sh * Revert "Update test_ci.sh" This reverts commit 9c7352b81766f3177d31eeec0ec178a301df966a. * Add RoBERTa for RLHF Stage 2 & 3 (test) RoBERTa for RLHF Stage 2 & 3 (still in testing) * Revert "Add RoBERTa for RLHF Stage 2 & 3 (test)" This reverts commit06741d894d
. * Add RoBERTa for RLHF stage 2 & 3 1. add roberta folder under model folder 2. add roberta option in train_reward_model.py 3. add some test in testci * Update test_ci.sh * Revert "Update test_ci.sh" This reverts commit 9c7352b81766f3177d31eeec0ec178a301df966a. * update roberta with coati * chat ci update * Revert "chat ci update" This reverts commit 17ae7ae01fa752bd3289fc39069868fde99cf846. * [Chat] fix the tokenizer "int too big to convert" error in SFT training fix the tokenizer error during SFT training using Bloom and OPT
This commit is contained in:
@@ -71,6 +71,7 @@ def train(args):
|
||||
else:
|
||||
raise ValueError(f'Unsupported model "{args.model}"')
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
max_len = args.max_len
|
||||
if args.model == 'llama':
|
||||
tokenizer = prepare_llama_tokenizer_and_embedding(tokenizer, model)
|
||||
|
||||
@@ -99,13 +100,14 @@ def train(args):
|
||||
train_data = load_dataset(args.dataset, 'super_natural_instructions', split='train')
|
||||
eval_data = load_dataset(args.dataset, 'super_natural_instructions', split='test')
|
||||
|
||||
train_dataset = SFTDataset(train_data, tokenizer)
|
||||
eval_dataset = SFTDataset(eval_data, tokenizer)
|
||||
train_dataset = SFTDataset(train_data, tokenizer, max_len)
|
||||
eval_dataset = SFTDataset(eval_data, tokenizer, max_len)
|
||||
|
||||
else:
|
||||
train_dataset = SupervisedDataset(tokenizer=tokenizer,
|
||||
data_path=args.dataset,
|
||||
max_datasets_size=args.max_datasets_size)
|
||||
max_datasets_size=args.max_datasets_size,
|
||||
max_length=max_len)
|
||||
eval_dataset = None
|
||||
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
|
||||
|
||||
@@ -176,6 +178,7 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
|
||||
parser.add_argument('--max_epochs', type=int, default=3)
|
||||
parser.add_argument('--batch_size', type=int, default=4)
|
||||
parser.add_argument('--max_len', type=int, default=512)
|
||||
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
|
||||
parser.add_argument('--log_interval', type=int, default=100, help="how many steps to log")
|
||||
parser.add_argument('--lr', type=float, default=5e-6)
|
||||
|
Reference in New Issue
Block a user