mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-24 19:17:30 +00:00
[Inference]Fused kv copy into rotary calculation (#5383)
* revise rotary embedding * remove useless print * adapt * fix * add * fix * modeling * fix * fix * fix * fused kv copy * fused copy * colossalai/kernel/triton/no_pad_rotary_embedding.py * del padding llama * del
This commit is contained in:
@@ -13,7 +13,7 @@ if HAS_TRITON:
|
||||
from .fused_rotary_embedding import fused_rotary_embedding
|
||||
from .gptq_triton import gptq_fused_linear_triton
|
||||
from .kvcache_copy import copy_kv_to_blocked_cache
|
||||
from .no_pad_rotary_embedding import rotary_embedding
|
||||
from .no_pad_rotary_embedding import decoding_fused_rotary_embedding, rotary_embedding
|
||||
from .rms_layernorm import rms_layernorm
|
||||
from .rotary_cache_copy import get_xine_cache
|
||||
from .softmax import softmax
|
||||
@@ -28,4 +28,5 @@ if HAS_TRITON:
|
||||
"rotary_embedding",
|
||||
"fused_rotary_embedding",
|
||||
"get_xine_cache",
|
||||
"decoding_fused_rotary_embedding",
|
||||
]
|
||||
|
@@ -45,21 +45,21 @@ def _copy_to_kvcache_seqlen1_kernel(
|
||||
k = tl.load(K + offsets_kv)
|
||||
v = tl.load(V + offsets_kv)
|
||||
|
||||
offsets_kvcache = (
|
||||
offsets_kcache = (
|
||||
block_id * stride_cachekb
|
||||
+ cur_kv_head_idx * stride_cachekh
|
||||
+ offsets_in_last_block * stride_cachekbs
|
||||
+ offsets_dmodel * stride_cachekd
|
||||
)
|
||||
offsets_kvcache = (
|
||||
offsets_vcache = (
|
||||
block_id * stride_cachevb
|
||||
+ cur_kv_head_idx * stride_cachevh
|
||||
+ offsets_in_last_block * stride_cachevbs
|
||||
+ offsets_dmodel * stride_cachevd
|
||||
)
|
||||
|
||||
tl.store(KCache + offsets_kvcache, k)
|
||||
tl.store(VCache + offsets_kvcache, v)
|
||||
tl.store(KCache + offsets_kcache, k)
|
||||
tl.store(VCache + offsets_vcache, v)
|
||||
return
|
||||
|
||||
|
||||
|
@@ -222,11 +222,11 @@ def fused_rotary_embedding_kernel(
|
||||
out_k0 = loaded_k0 * loaded_cos[:, None, :] - loaded_k1 * loaded_sin[:, None, :]
|
||||
out_k1 = loaded_k0 * loaded_sin[:, None, :] + loaded_k1 * loaded_cos[:, None, :] # total_tokens, head_num, head_dim
|
||||
|
||||
past_kv_seq_len = tl.load(context_lengths + tokens_range) - 1
|
||||
past_kv_seq_len = tl.load(context_lengths + tokens_range, mask=(tokens_range < q_total_tokens)) - 1
|
||||
|
||||
last_block_idx = past_kv_seq_len // block_size
|
||||
block_table_ptr = BLOCK_TABLES + tokens_range * bts_stride
|
||||
block_ids = tl.load(block_table_ptr + last_block_idx * btb_stride)
|
||||
block_ids = tl.load(block_table_ptr + last_block_idx * btb_stride, mask=(tokens_range < q_total_tokens))
|
||||
offsets_in_last_block = (past_kv_seq_len % block_size) * cachebs_stride
|
||||
|
||||
kv_range0 = (
|
||||
@@ -274,6 +274,241 @@ def fused_rotary_embedding_kernel(
|
||||
)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def fused_rotary_embedding_kernel_v2(
|
||||
q,
|
||||
k,
|
||||
cos,
|
||||
sin,
|
||||
kv_cache,
|
||||
BLOCK_TABLES,
|
||||
context_lengths,
|
||||
q_token_stride,
|
||||
q_head_stride,
|
||||
k_token_stride,
|
||||
k_head_stride,
|
||||
head_dim_stride,
|
||||
cos_token_stride,
|
||||
cos_stride,
|
||||
cacheb_stride,
|
||||
cacheh_stride,
|
||||
cachebs_stride,
|
||||
cached_stride,
|
||||
bts_stride,
|
||||
btb_stride,
|
||||
block_size,
|
||||
q_total_tokens,
|
||||
Q_HEAD_NUM: tl.constexpr,
|
||||
HEAD_DIM: tl.constexpr,
|
||||
):
|
||||
block_head_index = tl.program_id(0)
|
||||
if block_head_index >= Q_HEAD_NUM:
|
||||
return
|
||||
block_token_index = tl.program_id(1)
|
||||
|
||||
dim_range0 = tl.arange(0, HEAD_DIM // 2)
|
||||
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
|
||||
|
||||
off_q0 = block_token_index * q_token_stride + block_head_index * q_head_stride + dim_range0 * head_dim_stride
|
||||
off_q1 = block_token_index * q_token_stride + block_head_index * q_head_stride + dim_range1 * head_dim_stride
|
||||
off_k0 = block_token_index * k_token_stride + block_head_index * k_head_stride + dim_range0 * head_dim_stride
|
||||
off_k1 = block_token_index * k_token_stride + block_head_index * k_head_stride + dim_range1 * head_dim_stride
|
||||
|
||||
loaded_q0 = tl.load(
|
||||
q + off_q0,
|
||||
)
|
||||
loaded_q1 = tl.load(
|
||||
q + off_q1,
|
||||
)
|
||||
|
||||
loaded_k0 = tl.load(
|
||||
k + off_k0,
|
||||
)
|
||||
|
||||
loaded_k1 = tl.load(
|
||||
k + off_k1,
|
||||
)
|
||||
|
||||
off_cos_sin = block_token_index * cos_token_stride + dim_range0 * cos_stride
|
||||
|
||||
loaded_cos = tl.load(cos + off_cos_sin, mask=(block_token_index < q_total_tokens), other=0.0)
|
||||
loaded_sin = tl.load(sin + off_cos_sin, mask=(block_token_index < q_total_tokens), other=0.0)
|
||||
|
||||
out_q0 = loaded_q0 * loaded_cos - loaded_q1 * loaded_sin
|
||||
out_q1 = loaded_q0 * loaded_sin + loaded_q1 * loaded_cos
|
||||
|
||||
out_k0 = loaded_k0 * loaded_cos - loaded_k1 * loaded_sin
|
||||
out_k1 = loaded_k0 * loaded_sin + loaded_k1 * loaded_cos # total_tokens, head_num, head_dim
|
||||
|
||||
past_kv_seq_len = tl.load(context_lengths + block_token_index) - 1
|
||||
|
||||
last_block_idx = past_kv_seq_len // block_size
|
||||
block_table_ptr = BLOCK_TABLES + block_token_index * bts_stride
|
||||
block_ids = tl.load(block_table_ptr + last_block_idx * btb_stride, mask=(block_token_index < q_total_tokens))
|
||||
offsets_in_last_block = (past_kv_seq_len % block_size) * cachebs_stride
|
||||
|
||||
kv_range0 = (
|
||||
block_ids * cacheb_stride
|
||||
+ block_head_index * cacheh_stride
|
||||
+ offsets_in_last_block
|
||||
+ dim_range0 * cached_stride
|
||||
)
|
||||
kv_range1 = (
|
||||
block_ids * cacheb_stride
|
||||
+ block_head_index * cacheh_stride
|
||||
+ offsets_in_last_block
|
||||
+ dim_range1 * cached_stride
|
||||
)
|
||||
|
||||
tl.store(
|
||||
kv_cache + kv_range0,
|
||||
out_k0,
|
||||
)
|
||||
tl.store(
|
||||
kv_cache + kv_range1,
|
||||
out_k1,
|
||||
)
|
||||
|
||||
# concat
|
||||
tl.store(
|
||||
q + off_q0,
|
||||
out_q0,
|
||||
)
|
||||
tl.store(
|
||||
q + off_q1,
|
||||
out_q1,
|
||||
)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def decoding_fused_rotary_embedding_kernel(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
cos,
|
||||
sin,
|
||||
k_cache,
|
||||
v_cache,
|
||||
BLOCK_TABLES,
|
||||
context_lengths,
|
||||
q_token_stride,
|
||||
q_head_stride,
|
||||
k_token_stride,
|
||||
k_head_stride,
|
||||
head_dim_stride,
|
||||
cos_token_stride,
|
||||
cos_stride,
|
||||
cache_b_stride,
|
||||
cache_h_stride,
|
||||
cache_bs_stride,
|
||||
cache_d_stride,
|
||||
bts_stride,
|
||||
btb_stride,
|
||||
block_size,
|
||||
Q_HEAD_NUM: tl.constexpr,
|
||||
HEAD_DIM: tl.constexpr,
|
||||
):
|
||||
block_head_index = tl.program_id(0)
|
||||
if block_head_index >= Q_HEAD_NUM:
|
||||
return
|
||||
|
||||
block_token_index = tl.program_id(1)
|
||||
|
||||
dim_range0 = tl.arange(0, HEAD_DIM // 2)
|
||||
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
|
||||
total_dim_range = tl.arange(0, HEAD_DIM)
|
||||
|
||||
q_off_base = block_token_index * q_token_stride + block_head_index * q_head_stride
|
||||
off_q0 = q_off_base + dim_range0 * head_dim_stride
|
||||
off_q1 = q_off_base + dim_range1 * head_dim_stride
|
||||
|
||||
off_base = block_token_index * k_token_stride + block_head_index * k_head_stride
|
||||
off_k0 = off_base + dim_range0 * head_dim_stride
|
||||
off_k1 = off_base + dim_range1 * head_dim_stride
|
||||
|
||||
off_v = off_base + total_dim_range * head_dim_stride
|
||||
|
||||
loaded_q0 = tl.load(
|
||||
q + off_q0,
|
||||
)
|
||||
loaded_q1 = tl.load(
|
||||
q + off_q1,
|
||||
)
|
||||
|
||||
loaded_k0 = tl.load(
|
||||
k + off_k0,
|
||||
)
|
||||
|
||||
loaded_k1 = tl.load(
|
||||
k + off_k1,
|
||||
)
|
||||
|
||||
loaded_v = tl.load(
|
||||
v + off_v,
|
||||
)
|
||||
|
||||
off_cos_sin = block_token_index * cos_token_stride + dim_range0 * cos_stride
|
||||
|
||||
loaded_cos = tl.load(cos + off_cos_sin)
|
||||
loaded_sin = tl.load(sin + off_cos_sin)
|
||||
|
||||
out_q0 = loaded_q0 * loaded_cos - loaded_q1 * loaded_sin
|
||||
out_q1 = loaded_q0 * loaded_sin + loaded_q1 * loaded_cos
|
||||
|
||||
out_k0 = loaded_k0 * loaded_cos - loaded_k1 * loaded_sin
|
||||
out_k1 = loaded_k0 * loaded_sin + loaded_k1 * loaded_cos # total_tokens, head_num, head_dim
|
||||
|
||||
past_kv_seq_len = tl.load(context_lengths + block_token_index) - 1
|
||||
|
||||
last_block_idx = past_kv_seq_len // block_size
|
||||
block_ids = tl.load(BLOCK_TABLES + block_token_index * bts_stride + last_block_idx * btb_stride)
|
||||
offsets_in_last_block = past_kv_seq_len % block_size
|
||||
|
||||
k_range0 = (
|
||||
block_ids * cache_b_stride
|
||||
+ block_head_index * cache_h_stride
|
||||
+ offsets_in_last_block * cache_bs_stride
|
||||
+ dim_range0 * cache_d_stride
|
||||
)
|
||||
k_range1 = (
|
||||
block_ids * cache_b_stride
|
||||
+ block_head_index * cache_h_stride
|
||||
+ offsets_in_last_block * cache_bs_stride
|
||||
+ dim_range1 * cache_d_stride
|
||||
)
|
||||
v_range = (
|
||||
block_ids * cache_b_stride
|
||||
+ block_head_index * cache_h_stride
|
||||
+ offsets_in_last_block * cache_bs_stride
|
||||
+ total_dim_range * cache_d_stride
|
||||
)
|
||||
|
||||
tl.store(
|
||||
v_cache + v_range,
|
||||
loaded_v,
|
||||
)
|
||||
|
||||
tl.store(
|
||||
k_cache + k_range0,
|
||||
out_k0,
|
||||
)
|
||||
|
||||
tl.store(
|
||||
k_cache + k_range1,
|
||||
out_k1,
|
||||
)
|
||||
|
||||
# concat
|
||||
tl.store(
|
||||
q + off_q0,
|
||||
out_q0,
|
||||
)
|
||||
tl.store(
|
||||
q + off_q1,
|
||||
out_q1,
|
||||
)
|
||||
|
||||
|
||||
def rotary_embedding(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
@@ -297,12 +532,13 @@ def rotary_embedding(
|
||||
assert q.size(0) == k.size(0)
|
||||
BLOCK_HEAD = 4
|
||||
BLOCK_TOKENS = 4
|
||||
grid = lambda META: (triton.cdiv(q_head_num, META["BLOCK_HEAD"]), triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]))
|
||||
|
||||
if head_dim >= 256:
|
||||
if head_dim >= 1024:
|
||||
num_warps = 32
|
||||
elif head_dim >= 128:
|
||||
elif head_dim >= 512:
|
||||
num_warps = 16
|
||||
elif head_dim >= 256:
|
||||
num_warps = 8
|
||||
else:
|
||||
num_warps = 4
|
||||
|
||||
@@ -318,6 +554,10 @@ def rotary_embedding(
|
||||
cos_token_stride = cos.stride(0)
|
||||
cos_stride = cos.stride(1)
|
||||
if k_cache == None:
|
||||
grid = lambda META: (
|
||||
triton.cdiv(q_head_num, META["BLOCK_HEAD"]),
|
||||
triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]),
|
||||
)
|
||||
rotary_embedding_kernel[grid](
|
||||
q,
|
||||
k,
|
||||
@@ -339,7 +579,8 @@ def rotary_embedding(
|
||||
num_warps=num_warps,
|
||||
)
|
||||
else:
|
||||
fused_rotary_embedding_kernel[grid](
|
||||
grid = (triton.next_power_of_2(q_head_num), q_total_tokens)
|
||||
fused_rotary_embedding_kernel_v2[grid](
|
||||
q,
|
||||
k,
|
||||
cos,
|
||||
@@ -363,10 +604,85 @@ def rotary_embedding(
|
||||
k_cache.size(-2),
|
||||
q_total_tokens,
|
||||
Q_HEAD_NUM=q_head_num,
|
||||
K_HEAD_NUM=k_head_num,
|
||||
HEAD_DIM=head_dim,
|
||||
BLOCK_HEAD=BLOCK_HEAD,
|
||||
BLOCK_TOKENS=BLOCK_TOKENS,
|
||||
num_warps=num_warps,
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
def decoding_fused_rotary_embedding(
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
cos: torch.Tensor,
|
||||
sin: torch.Tensor,
|
||||
k_cache: Optional[torch.Tensor] = None,
|
||||
v_cache: Optional[torch.Tensor] = None,
|
||||
block_tables: Optional[torch.Tensor] = None,
|
||||
kv_lengths: Optional[torch.Tensor] = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
q: query tensor, [total_tokens, head_num, head_dim]
|
||||
k: key tensor, [total_tokens, head_num, head_dim]
|
||||
v: value tensor, [total tokens, head_num, head_dim]
|
||||
cos: cosine for rotary embedding, [max_position_len, head_dim]
|
||||
sin: sine for rotary embedding, [max_position_len, head_dim]
|
||||
k_cache (torch.Tensor): Blocked key cache. [num_blocks, num_kv_heads, block_size, head_dim]
|
||||
v_cache (torch.Tensor): Blocked value cache. [num_blocks, num_kv_heads, block_size, head_dim]
|
||||
kv_lengths, Past key/value sequence lengths plus current sequence length for each sequence. [bsz]
|
||||
block_tables: Block tables for each sequence. [bsz, max_blocks_per_sequence]
|
||||
"""
|
||||
q_total_tokens, q_head_num, head_dim = q.shape
|
||||
assert q.size(0) == k.size(0) == v.size(0)
|
||||
assert q.size(1) == k.size(1) == v.size(1)
|
||||
assert k_cache.size(-1) == v_cache.size(-1)
|
||||
|
||||
if head_dim >= 1024:
|
||||
num_warps = 32
|
||||
elif head_dim >= 512:
|
||||
num_warps = 16
|
||||
elif head_dim >= 256:
|
||||
num_warps = 8
|
||||
else:
|
||||
num_warps = 4
|
||||
|
||||
q_token_stride = q.stride(0)
|
||||
q_head_stride = q.stride(1)
|
||||
head_dim_stride = q.stride(2)
|
||||
|
||||
k_token_stride = k.stride(0)
|
||||
k_head_stride = k.stride(1)
|
||||
|
||||
cos_token_stride = cos.stride(0)
|
||||
cos_stride = cos.stride(1)
|
||||
grid = (triton.next_power_of_2(q_head_num), q_total_tokens)
|
||||
decoding_fused_rotary_embedding_kernel[grid](
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
cos,
|
||||
sin,
|
||||
k_cache,
|
||||
v_cache,
|
||||
block_tables,
|
||||
kv_lengths,
|
||||
q_token_stride,
|
||||
q_head_stride,
|
||||
k_token_stride,
|
||||
k_head_stride,
|
||||
head_dim_stride,
|
||||
cos_token_stride,
|
||||
cos_stride,
|
||||
k_cache.stride(0),
|
||||
k_cache.stride(1),
|
||||
k_cache.stride(2),
|
||||
k_cache.stride(3),
|
||||
block_tables.stride(0),
|
||||
block_tables.stride(1),
|
||||
k_cache.size(-2),
|
||||
Q_HEAD_NUM=q_head_num,
|
||||
HEAD_DIM=head_dim,
|
||||
num_warps=num_warps,
|
||||
)
|
||||
return
|
||||
|
Reference in New Issue
Block a user