[booster] implemented the torch ddd + resnet example (#3232)

* [booster] implemented the torch ddd + resnet example

* polish code
This commit is contained in:
Frank Lee
2023-03-27 10:24:14 +08:00
committed by GitHub
parent 1a229045af
commit 73d3e4d309
22 changed files with 608 additions and 128 deletions

View File

@@ -0,0 +1,5 @@
# New API Features
**The New API is not officially released yet.**
This folder contains some of the demonstrations of the new API. The new API is still under intensive development and will be released soon.

View File

@@ -0,0 +1,2 @@
#!/usr/bin/env
echo "The CI integration will be completed when the API is stable"

View File

@@ -0,0 +1,4 @@
data
checkpoint
ckpt-fp16
ckpt-fp32

View File

@@ -0,0 +1,44 @@
# Distributed Data Parallel
## 🚀 Quick Start
This example provides a training script and and evaluation script. The training script provides a an example of training ResNet on CIFAR10 dataset from scratch.
- Training Arguments
- `-r, `--resume`: resume from checkpoint file path
- `-c`, `--checkpoint`: the folder to save checkpoints
- `-i`, `--interval`: epoch interval to save checkpoints
- `-f`, `--fp16`: use fp16
- Eval Arguments
- `-e`, `--epoch`: select the epoch to evaluate
- `-c`, `--checkpoint`: the folder where checkpoints are found
### Train
```bash
# train with torch DDP with fp32
colossalai run --nproc_per_node 2 train.py -c ./ckpt-fp32
# train with torch DDP with mixed precision training
colossalai run --nproc_per_node 2 train.py -c ./ckpt-fp16 --fp16
```
### Eval
```bash
# evaluate fp32 training
python eval.py -c ./ckpt-fp32 -e 80
# evaluate fp16 mixed precision training
python eval.py -c ./ckpt-fp16 -e 80
```
Expected accuracy performance will be:
| Model | Single-GPU Baseline FP32 | Booster DDP with FP32 | Booster DDP with FP16 |
| --------- | ------------------------ | --------------------- | --------------------- |
| ResNet-18 | 85.85% | 85.03% | 85.12% |
**Note: the baseline is a adapted from the [script](https://pytorch-tutorial.readthedocs.io/en/latest/tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifar10/) to use `torchvision.models.resnet18`**

View File

@@ -0,0 +1,48 @@
import argparse
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--epoch', type=int, default=80, help="resume from the epoch's checkpoint")
parser.add_argument('-c', '--checkpoint', type=str, default='./checkpoint', help="checkpoint directory")
args = parser.parse_args()
# ==============================
# Prepare Test Dataset
# ==============================
# CIFAR-10 dataset
test_dataset = torchvision.datasets.CIFAR10(root='./data/', train=False, transform=transforms.ToTensor())
# Data loader
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=128, shuffle=False)
# ==============================
# Load Model
# ==============================
model = torchvision.models.resnet18(num_classes=10).cuda()
state_dict = torch.load(f'{args.checkpoint}/model_{args.epoch}.pth')
model.load_state_dict(state_dict)
# ==============================
# Run Evaluation
# ==============================
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.cuda()
labels = labels.cuda()
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

View File

@@ -0,0 +1,128 @@
import argparse
from pathlib import Path
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import MultiStepLR
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import TorchDDPPlugin
from colossalai.cluster import DistCoordinator
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--resume', type=int, default=-1, help="resume from the epoch's checkpoint")
parser.add_argument('-c', '--checkpoint', type=str, default='./checkpoint', help="checkpoint directory")
parser.add_argument('-i', '--interval', type=int, default=5, help="interval of saving checkpoint")
parser.add_argument('-f', '--fp16', action='store_true', help="use fp16")
args = parser.parse_args()
# ==============================
# Prepare Checkpoint Directory
# ==============================
Path(args.checkpoint).mkdir(parents=True, exist_ok=True)
# ==============================
# Prepare Hyperparameters
# ==============================
NUM_EPOCHS = 80
LEARNING_RATE = 1e-3
START_EPOCH = args.resume if args.resume >= 0 else 0
# ==============================
# Launch Distributed Environment
# ==============================
colossalai.launch_from_torch(config={})
coordinator = DistCoordinator()
# update the learning rate with linear scaling
# old_gpu_num / old_lr = new_gpu_num / new_lr
LEARNING_RATE *= coordinator.world_size
# ==============================
# Prepare Booster
# ==============================
plugin = TorchDDPPlugin()
if args.fp16:
booster = Booster(mixed_precision='fp16', plugin=plugin)
else:
booster = Booster(plugin=plugin)
# ==============================
# Prepare Train Dataset
# ==============================
transform = transforms.Compose(
[transforms.Pad(4),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32),
transforms.ToTensor()])
# CIFAR-10 dataset
with coordinator.priority_execution():
train_dataset = torchvision.datasets.CIFAR10(root='./data/', train=True, transform=transform, download=True)
# ====================================
# Prepare model, optimizer, criterion
# ====================================
# resent50
model = torchvision.models.resnet18(num_classes=10).cuda()
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# lr scheduler
lr_scheduler = MultiStepLR(optimizer, milestones=[20, 40, 60, 80], gamma=1 / 3)
# prepare dataloader with torch ddp plugin
train_dataloader = plugin.prepare_train_dataloader(train_dataset, batch_size=100, shuffle=True)
# ==============================
# Resume from checkpoint
# ==============================
if args.resume >= 0:
booster.load_model(model, f'{args.checkpoint}/model_{args.resume}.pth')
booster.load_optimizer(optimizer, f'{args.checkpoint}/optimizer_{args.resume}.pth')
booster.load_lr_scheduler(lr_scheduler, f'{args.checkpoint}/lr_scheduler_{args.resume}.pth')
# ==============================
# Boost with ColossalAI
# ==============================
model, optimizer, criterion, train_dataloader, lr_scheduler = booster.boost(model, optimizer, criterion,
train_dataloader, lr_scheduler)
# ==============================
# Train model
# ==============================
total_step = len(train_dataloader)
for epoch in range(START_EPOCH, NUM_EPOCHS):
for i, (images, labels) in enumerate(train_dataloader):
images = images.cuda()
labels = labels.cuda()
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
booster.backward(loss, optimizer)
optimizer.step()
if (i + 1) % 100 == 0:
print("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}".format(epoch + 1, NUM_EPOCHS, i + 1, total_step,
loss.item()))
lr_scheduler.step()
# save checkpoint every 5 epoch
if (epoch + 1) % args.interval == 0:
booster.save_model(model, f'{args.checkpoint}/model_{epoch + 1}.pth')
booster.save_optimizer(optimizer, f'{args.checkpoint}/optimizer_{epoch + 1}.pth')
booster.save_lr_scheduler(lr_scheduler, f'{args.checkpoint}/lr_scheduler_{epoch + 1}.pth')