[shardformer] update llama2/opt finetune example and fix llama2 policy (#4645)

* [shardformer] update shardformer readme

[shardformer] update shardformer readme

[shardformer] update shardformer readme

* [shardformer] update llama2/opt finetune example and shardformer update to llama2

* [shardformer] update llama2/opt finetune example and shardformer update to llama2

* [shardformer] update llama2/opt finetune example and shardformer update to llama2

* [shardformer] change dataset

* [shardformer] change dataset

* [shardformer] fix CI

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

[example] update opt example

[example] resolve comments

fix

fix
This commit is contained in:
flybird11111
2023-09-09 22:45:36 +08:00
committed by GitHub
parent a686f9ddc8
commit 7486ed7d3a
12 changed files with 165 additions and 167 deletions

View File

@@ -58,25 +58,24 @@ def evaluate_model(
model.eval()
def evaluate_subset(dataloader: DataLoader):
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
accum_loss = torch.zeros(1, device=get_current_device())
for batch in dataloader:
batch = move_to_cuda(batch)
labels = batch["labels"]
batch_size = batch["input_ids"].shape[0]
if hasattr(booster.plugin, "stage_manager") and booster.plugin.stage_manager is not None:
if use_pipeline:
pg_mesh = booster.plugin.pg_mesh
pp_group = booster.plugin.pp_group
current_pp_group_ranks = pg_mesh.get_ranks_in_group(pp_group)
current_rank = dist.get_rank()
#TODO pass dataloader to execute_pipeline directly
batch = iter([batch])
outputs = booster.execute_pipeline(batch, model, criterion, return_loss=True, return_outputs=True)
if booster.plugin.stage_manager.is_last_stage():
val_loss = outputs["loss"]
if is_pp_last_stage:
logits = outputs["outputs"]["logits"]
val_loss = outputs["loss"]
accum_loss.add_(val_loss)
if num_labels > 1:
@@ -84,19 +83,15 @@ def evaluate_model(
elif num_labels == 1:
preds = logits.squeeze()
dist.broadcast(preds, src=current_rank, group=pp_group)
dist.broadcast(val_loss, src=current_rank, group=pp_group)
dist.broadcast_object_list([preds, val_loss], src=current_pp_group_ranks[-1], group=pp_group)
metric.add_batch(predictions=preds, references=labels)
elif current_rank in current_pp_group_ranks:
val_loss = torch.empty((1,), device=get_current_device())
preds = torch.empty((batch_size,), dtype=torch.int64, device=get_current_device())
object_list = [None, None]
dist.broadcast_object_list(object_list, src=current_pp_group_ranks[-1], group=pp_group)
dist.broadcast(preds, src=current_pp_group_ranks[-1], group=pp_group)
dist.broadcast(val_loss, src=current_pp_group_ranks[-1], group=pp_group)
accum_loss.add_(val_loss)
metric.add_batch(predictions=preds, references=labels)
metric.add_batch(predictions=object_list[0].to(get_current_device()), references=labels)
accum_loss.add_(object_list[1].to(get_current_device()))
else:
batch = move_to_cuda(batch)
@@ -132,31 +127,33 @@ def evaluate_model(
def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, _criterion: Callable, lr_scheduler: LRScheduler,
train_dataloader: DataLoader, booster: Booster, coordinator: DistCoordinator):
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
total_step = len(train_dataloader)
model.train()
is_pp_last_stage = hasattr(
booster.plugin,
"stage_manager") and booster.plugin.stage_manager is not None and booster.plugin.stage_manager.is_last_stage()
with tqdm(train_dataloader,
optimizer.zero_grad()
train_dataloader_iter = iter(train_dataloader)
with tqdm(range(total_step),
desc=f'Epoch [{epoch + 1}/{NUM_EPOCHS}]',
disable=not (coordinator.is_master() or is_pp_last_stage)) as pbar:
for batch in pbar:
# Forward pass
batch = move_to_cuda(batch)
if hasattr(booster.plugin, "stage_manager") and booster.plugin.stage_manager is not None:
#TODO pass train_dataloader to execute_pipeline directly
batch = iter([batch])
outputs = booster.execute_pipeline(batch,
# Forward pass
for _ in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(train_dataloader_iter,
model,
_criterion,
optimizer,
return_loss=True,
return_outputs=True)
# Backward and optimize
if booster.plugin.stage_manager.is_last_stage():
if is_pp_last_stage:
loss = outputs['loss']
pbar.set_postfix({'loss': loss.item()})
else:
outputs = model(**batch)
data = next(train_dataloader_iter)
data = move_to_cuda(data)
outputs = model(**data)
loss = _criterion(outputs, None)
# Backward
booster.backward(loss, optimizer)

View File

@@ -4,117 +4,65 @@ from colossalai import get_default_parser
def parse_demo_args():
parser = get_default_parser()
parser.add_argument(
"--model_name_or_path",
type=str,
default="facebook/opt-350m",
help="Path to pretrained model or model identifier from huggingface.co/models."
)
parser.add_argument(
"--output_path",
type=str,
default="./output_model.bin",
help="The path of your saved model after finetuning."
)
parser.add_argument("--model_name_or_path",
type=str,
default="facebook/opt-350m",
help="Path to pretrained model or model identifier from huggingface.co/models.")
parser.add_argument("--output_path",
type=str,
default="./output_model.bin",
help="The path of your saved model after finetuning.")
parser.add_argument(
"--plugin",
type=str,
default="gemini",
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'."
)
parser.add_argument(
"--num_epoch",
type=int,
default=10,
help="Number of epochs."
)
parser.add_argument(
"--batch_size",
type=int,
default=32,
help="Batch size (per dp group) for the training dataloader."
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use."
)
parser.add_argument(
"--warmup_ratio",
type=float,
default=0.1,
help="Ratio of warmup steps against total training steps."
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.01,
help="Weight decay to use."
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="A seed for reproducible training."
help=
"Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero', 'hybrid_parallel'."
)
parser.add_argument("--num_epoch", type=int, default=10, help="Number of epochs.")
parser.add_argument("--batch_size",
type=int,
default=32,
help="Batch size (per dp group) for the training dataloader.")
parser.add_argument("--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.")
parser.add_argument("--warmup_ratio",
type=float,
default=0.1,
help="Ratio of warmup steps against total training steps.")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay to use.")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
args = parser.parse_args()
return args
def parse_benchmark_args():
parser = get_default_parser()
parser.add_argument(
"--model_name_or_path",
type=str,
default="facebook/opt-125m",
help="Path to pretrained model or model identifier from huggingface.co/models."
)
parser.add_argument("--model_name_or_path",
type=str,
default="facebook/opt-125m",
help="Path to pretrained model or model identifier from huggingface.co/models.")
parser.add_argument(
"--plugin",
type=str,
default="gemini",
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'."
)
parser.add_argument(
"--batch_size",
type=int,
default=32,
help="Batch size (per dp group) for the training dataloader."
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use."
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.0,
help="Weight decay to use."
)
parser.add_argument(
"--max_train_steps",
type=int,
default=20,
help="Total number of training steps to perform."
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="A seed for reproducible training."
)
parser.add_argument(
"--mem_cap",
type=int,
default=0,
help="Limit on the usage of space for each GPU (in GB)."
)
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'.")
parser.add_argument("--batch_size",
type=int,
default=32,
help="Batch size (per dp group) for the training dataloader.")
parser.add_argument("--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.")
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--max_train_steps", type=int, default=20, help="Total number of training steps to perform.")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument("--mem_cap", type=int, default=0, help="Limit on the usage of space for each GPU (in GB).")
args = parser.parse_args()
return args
return args

View File

@@ -11,7 +11,8 @@ from transformers.utils.versions import require_version
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.booster.plugin.hybrid_parallel_plugin import HybridParallelModule
from colossalai.cluster import DistCoordinator
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer import HybridAdam
@@ -19,35 +20,54 @@ from colossalai.nn.optimizer import HybridAdam
require_version("datasets>=1.8.0", "To fix: pip install -r requirements.txt")
require_version("transformers>=4.20.0", "To fix: pip install -r requirements.txt")
output_transform_fn = lambda x: x
criterion = lambda x: x.loss
def move_to_cuda(batch, device):
return {k: v.to(device) for k, v in batch.items()}
def train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator):
def train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator):
torch.cuda.synchronize()
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
total_step = len(dataloader)
model.train()
optimizer.zero_grad()
dataloader = iter(dataloader)
with tqdm(range(total_step), desc=f'Epoch [{epoch + 1}]',
disable=not (coordinator.is_master() or is_pp_last_stage)) as pbar:
with tqdm(dataloader, desc=f'Epoch [{epoch + 1}]', disable=not coordinator.is_master()) as pbar:
# Forward pass
for _ in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(dataloader,
model,
_criterion,
optimizer,
return_loss=True,
return_outputs=True)
# Backward and optimize
if is_pp_last_stage:
loss = outputs['loss']
pbar.set_postfix({'loss': loss.item()})
else:
data = next(dataloader)
data = move_to_cuda(data)
outputs = model(**data)
loss = _criterion(outputs, None)
# Backward
booster.backward(loss, optimizer)
pbar.set_postfix({'loss': loss.item()})
for batch in pbar:
# Forward
optimizer.zero_grad()
batch = move_to_cuda(batch, torch.cuda.current_device())
outputs = model(use_cache=False, **batch)
loss = outputs['loss']
# Backward
booster.backward(loss, optimizer)
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
# Print batch loss
pbar.set_postfix({'loss': loss.item()})
def main():
@@ -86,6 +106,16 @@ def main():
plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5)
elif args.plugin == 'low_level_zero':
plugin = LowLevelZeroPlugin(initial_scale=2**5)
elif args.plugin == 'hybrid_parallel':
# modify the param accordingly for finetuning test cases
plugin = HybridParallelPlugin(tp_size=2,
pp_size=2,
num_microbatches=2,
enable_all_optimization=True,
zero_stage=0,
precision='fp16',
initial_scale=1)
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
# Prepare tokenizer and dataloader
@@ -107,21 +137,28 @@ def main():
num_warmup_steps=num_warmup_steps,
num_training_steps=len(dataloader) * args.num_epoch)
# Define criterion
def _criterion(outputs, inputs):
outputs = output_transform_fn(outputs)
loss = criterion(outputs)
return loss
# Set booster
booster = Booster(plugin=plugin, **booster_kwargs)
model, optimizer, _, dataloader, lr_scheduler = booster.boost(model=model,
optimizer=optimizer,
dataloader=dataloader,
lr_scheduler=lr_scheduler)
model, optimizer, _criterion, dataloader, lr_scheduler = booster.boost(model=model,
optimizer=optimizer,
dataloader=dataloader,
criterion=_criterion,
lr_scheduler=lr_scheduler)
# Start finetuning
logger.info(f"Start finetuning", ranks=[0])
for epoch in range(args.num_epoch):
train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator)
train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator)
# Finish training and evaluate
logger.info(f"Finish finetuning", ranks=[0])
booster.save_model(model, args.output_path)
booster.save_model(model, args.output_path, shard=True)
logger.info(f"Saving model checkpoint to {args.output_path}", ranks=[0])

View File

@@ -9,7 +9,7 @@ OUTPUT_PATH="./output_model.bin"
# plugin(training strategy)
# can only be one of "torch_ddp"/"torch_ddp_fp16"/"low_level_zero"/"gemini"
PLUGIN="gemini"
PLUGIN="hybrid_parallel"
# number of gpus to use
GPUNUM=4