mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
[shardformer] update llama2/opt finetune example and fix llama2 policy (#4645)
* [shardformer] update shardformer readme [shardformer] update shardformer readme [shardformer] update shardformer readme * [shardformer] update llama2/opt finetune example and shardformer update to llama2 * [shardformer] update llama2/opt finetune example and shardformer update to llama2 * [shardformer] update llama2/opt finetune example and shardformer update to llama2 * [shardformer] change dataset * [shardformer] change dataset * [shardformer] fix CI * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] fix [example] update opt example [example] resolve comments fix fix
This commit is contained in:
@@ -58,25 +58,24 @@ def evaluate_model(
|
||||
model.eval()
|
||||
|
||||
def evaluate_subset(dataloader: DataLoader):
|
||||
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
|
||||
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
|
||||
|
||||
accum_loss = torch.zeros(1, device=get_current_device())
|
||||
for batch in dataloader:
|
||||
batch = move_to_cuda(batch)
|
||||
labels = batch["labels"]
|
||||
batch_size = batch["input_ids"].shape[0]
|
||||
if hasattr(booster.plugin, "stage_manager") and booster.plugin.stage_manager is not None:
|
||||
if use_pipeline:
|
||||
pg_mesh = booster.plugin.pg_mesh
|
||||
pp_group = booster.plugin.pp_group
|
||||
current_pp_group_ranks = pg_mesh.get_ranks_in_group(pp_group)
|
||||
current_rank = dist.get_rank()
|
||||
#TODO pass dataloader to execute_pipeline directly
|
||||
batch = iter([batch])
|
||||
outputs = booster.execute_pipeline(batch, model, criterion, return_loss=True, return_outputs=True)
|
||||
|
||||
if booster.plugin.stage_manager.is_last_stage():
|
||||
val_loss = outputs["loss"]
|
||||
|
||||
if is_pp_last_stage:
|
||||
logits = outputs["outputs"]["logits"]
|
||||
|
||||
val_loss = outputs["loss"]
|
||||
accum_loss.add_(val_loss)
|
||||
|
||||
if num_labels > 1:
|
||||
@@ -84,19 +83,15 @@ def evaluate_model(
|
||||
elif num_labels == 1:
|
||||
preds = logits.squeeze()
|
||||
|
||||
dist.broadcast(preds, src=current_rank, group=pp_group)
|
||||
dist.broadcast(val_loss, src=current_rank, group=pp_group)
|
||||
dist.broadcast_object_list([preds, val_loss], src=current_pp_group_ranks[-1], group=pp_group)
|
||||
|
||||
metric.add_batch(predictions=preds, references=labels)
|
||||
elif current_rank in current_pp_group_ranks:
|
||||
val_loss = torch.empty((1,), device=get_current_device())
|
||||
preds = torch.empty((batch_size,), dtype=torch.int64, device=get_current_device())
|
||||
object_list = [None, None]
|
||||
dist.broadcast_object_list(object_list, src=current_pp_group_ranks[-1], group=pp_group)
|
||||
|
||||
dist.broadcast(preds, src=current_pp_group_ranks[-1], group=pp_group)
|
||||
dist.broadcast(val_loss, src=current_pp_group_ranks[-1], group=pp_group)
|
||||
|
||||
accum_loss.add_(val_loss)
|
||||
metric.add_batch(predictions=preds, references=labels)
|
||||
metric.add_batch(predictions=object_list[0].to(get_current_device()), references=labels)
|
||||
accum_loss.add_(object_list[1].to(get_current_device()))
|
||||
|
||||
else:
|
||||
batch = move_to_cuda(batch)
|
||||
@@ -132,31 +127,33 @@ def evaluate_model(
|
||||
def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, _criterion: Callable, lr_scheduler: LRScheduler,
|
||||
train_dataloader: DataLoader, booster: Booster, coordinator: DistCoordinator):
|
||||
|
||||
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
|
||||
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
|
||||
total_step = len(train_dataloader)
|
||||
|
||||
model.train()
|
||||
is_pp_last_stage = hasattr(
|
||||
booster.plugin,
|
||||
"stage_manager") and booster.plugin.stage_manager is not None and booster.plugin.stage_manager.is_last_stage()
|
||||
with tqdm(train_dataloader,
|
||||
optimizer.zero_grad()
|
||||
train_dataloader_iter = iter(train_dataloader)
|
||||
with tqdm(range(total_step),
|
||||
desc=f'Epoch [{epoch + 1}/{NUM_EPOCHS}]',
|
||||
disable=not (coordinator.is_master() or is_pp_last_stage)) as pbar:
|
||||
for batch in pbar:
|
||||
# Forward pass
|
||||
batch = move_to_cuda(batch)
|
||||
if hasattr(booster.plugin, "stage_manager") and booster.plugin.stage_manager is not None:
|
||||
#TODO pass train_dataloader to execute_pipeline directly
|
||||
batch = iter([batch])
|
||||
outputs = booster.execute_pipeline(batch,
|
||||
# Forward pass
|
||||
for _ in pbar:
|
||||
if use_pipeline:
|
||||
outputs = booster.execute_pipeline(train_dataloader_iter,
|
||||
model,
|
||||
_criterion,
|
||||
optimizer,
|
||||
return_loss=True,
|
||||
return_outputs=True)
|
||||
# Backward and optimize
|
||||
if booster.plugin.stage_manager.is_last_stage():
|
||||
if is_pp_last_stage:
|
||||
loss = outputs['loss']
|
||||
pbar.set_postfix({'loss': loss.item()})
|
||||
else:
|
||||
outputs = model(**batch)
|
||||
data = next(train_dataloader_iter)
|
||||
data = move_to_cuda(data)
|
||||
outputs = model(**data)
|
||||
loss = _criterion(outputs, None)
|
||||
# Backward
|
||||
booster.backward(loss, optimizer)
|
||||
|
@@ -4,117 +4,65 @@ from colossalai import get_default_parser
|
||||
def parse_demo_args():
|
||||
|
||||
parser = get_default_parser()
|
||||
parser.add_argument(
|
||||
"--model_name_or_path",
|
||||
type=str,
|
||||
default="facebook/opt-350m",
|
||||
help="Path to pretrained model or model identifier from huggingface.co/models."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_path",
|
||||
type=str,
|
||||
default="./output_model.bin",
|
||||
help="The path of your saved model after finetuning."
|
||||
)
|
||||
parser.add_argument("--model_name_or_path",
|
||||
type=str,
|
||||
default="facebook/opt-350m",
|
||||
help="Path to pretrained model or model identifier from huggingface.co/models.")
|
||||
parser.add_argument("--output_path",
|
||||
type=str,
|
||||
default="./output_model.bin",
|
||||
help="The path of your saved model after finetuning.")
|
||||
parser.add_argument(
|
||||
"--plugin",
|
||||
type=str,
|
||||
default="gemini",
|
||||
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_epoch",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of epochs."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=32,
|
||||
help="Batch size (per dp group) for the training dataloader."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--learning_rate",
|
||||
type=float,
|
||||
default=5e-5,
|
||||
help="Initial learning rate (after the potential warmup period) to use."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--warmup_ratio",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="Ratio of warmup steps against total training steps."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--weight_decay",
|
||||
type=float,
|
||||
default=0.01,
|
||||
help="Weight decay to use."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="A seed for reproducible training."
|
||||
help=
|
||||
"Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero', 'hybrid_parallel'."
|
||||
)
|
||||
parser.add_argument("--num_epoch", type=int, default=10, help="Number of epochs.")
|
||||
parser.add_argument("--batch_size",
|
||||
type=int,
|
||||
default=32,
|
||||
help="Batch size (per dp group) for the training dataloader.")
|
||||
parser.add_argument("--learning_rate",
|
||||
type=float,
|
||||
default=5e-5,
|
||||
help="Initial learning rate (after the potential warmup period) to use.")
|
||||
parser.add_argument("--warmup_ratio",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="Ratio of warmup steps against total training steps.")
|
||||
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay to use.")
|
||||
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
|
||||
def parse_benchmark_args():
|
||||
|
||||
parser = get_default_parser()
|
||||
parser.add_argument(
|
||||
"--model_name_or_path",
|
||||
type=str,
|
||||
default="facebook/opt-125m",
|
||||
help="Path to pretrained model or model identifier from huggingface.co/models."
|
||||
)
|
||||
parser.add_argument("--model_name_or_path",
|
||||
type=str,
|
||||
default="facebook/opt-125m",
|
||||
help="Path to pretrained model or model identifier from huggingface.co/models.")
|
||||
parser.add_argument(
|
||||
"--plugin",
|
||||
type=str,
|
||||
default="gemini",
|
||||
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=32,
|
||||
help="Batch size (per dp group) for the training dataloader."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--learning_rate",
|
||||
type=float,
|
||||
default=5e-5,
|
||||
help="Initial learning rate (after the potential warmup period) to use."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--weight_decay",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Weight decay to use."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_train_steps",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Total number of training steps to perform."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="A seed for reproducible training."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mem_cap",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Limit on the usage of space for each GPU (in GB)."
|
||||
)
|
||||
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'.")
|
||||
parser.add_argument("--batch_size",
|
||||
type=int,
|
||||
default=32,
|
||||
help="Batch size (per dp group) for the training dataloader.")
|
||||
parser.add_argument("--learning_rate",
|
||||
type=float,
|
||||
default=5e-5,
|
||||
help="Initial learning rate (after the potential warmup period) to use.")
|
||||
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
|
||||
parser.add_argument("--max_train_steps", type=int, default=20, help="Total number of training steps to perform.")
|
||||
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
|
||||
parser.add_argument("--mem_cap", type=int, default=0, help="Limit on the usage of space for each GPU (in GB).")
|
||||
args = parser.parse_args()
|
||||
|
||||
return args
|
||||
return args
|
||||
|
@@ -11,7 +11,8 @@ from transformers.utils.versions import require_version
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
||||
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
||||
from colossalai.booster.plugin.hybrid_parallel_plugin import HybridParallelModule
|
||||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
@@ -19,35 +20,54 @@ from colossalai.nn.optimizer import HybridAdam
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r requirements.txt")
|
||||
require_version("transformers>=4.20.0", "To fix: pip install -r requirements.txt")
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
criterion = lambda x: x.loss
|
||||
|
||||
|
||||
def move_to_cuda(batch, device):
|
||||
return {k: v.to(device) for k, v in batch.items()}
|
||||
|
||||
|
||||
def train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator):
|
||||
def train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator):
|
||||
|
||||
torch.cuda.synchronize()
|
||||
|
||||
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
|
||||
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
|
||||
total_step = len(dataloader)
|
||||
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
dataloader = iter(dataloader)
|
||||
with tqdm(range(total_step), desc=f'Epoch [{epoch + 1}]',
|
||||
disable=not (coordinator.is_master() or is_pp_last_stage)) as pbar:
|
||||
|
||||
with tqdm(dataloader, desc=f'Epoch [{epoch + 1}]', disable=not coordinator.is_master()) as pbar:
|
||||
# Forward pass
|
||||
for _ in pbar:
|
||||
if use_pipeline:
|
||||
outputs = booster.execute_pipeline(dataloader,
|
||||
model,
|
||||
_criterion,
|
||||
optimizer,
|
||||
return_loss=True,
|
||||
return_outputs=True)
|
||||
# Backward and optimize
|
||||
if is_pp_last_stage:
|
||||
loss = outputs['loss']
|
||||
pbar.set_postfix({'loss': loss.item()})
|
||||
else:
|
||||
data = next(dataloader)
|
||||
data = move_to_cuda(data)
|
||||
outputs = model(**data)
|
||||
loss = _criterion(outputs, None)
|
||||
# Backward
|
||||
booster.backward(loss, optimizer)
|
||||
pbar.set_postfix({'loss': loss.item()})
|
||||
|
||||
for batch in pbar:
|
||||
|
||||
# Forward
|
||||
optimizer.zero_grad()
|
||||
batch = move_to_cuda(batch, torch.cuda.current_device())
|
||||
|
||||
outputs = model(use_cache=False, **batch)
|
||||
loss = outputs['loss']
|
||||
|
||||
# Backward
|
||||
booster.backward(loss, optimizer)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
# Print batch loss
|
||||
pbar.set_postfix({'loss': loss.item()})
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
@@ -86,6 +106,16 @@ def main():
|
||||
plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5)
|
||||
elif args.plugin == 'low_level_zero':
|
||||
plugin = LowLevelZeroPlugin(initial_scale=2**5)
|
||||
elif args.plugin == 'hybrid_parallel':
|
||||
# modify the param accordingly for finetuning test cases
|
||||
plugin = HybridParallelPlugin(tp_size=2,
|
||||
pp_size=2,
|
||||
num_microbatches=2,
|
||||
enable_all_optimization=True,
|
||||
zero_stage=0,
|
||||
precision='fp16',
|
||||
initial_scale=1)
|
||||
|
||||
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
|
||||
|
||||
# Prepare tokenizer and dataloader
|
||||
@@ -107,21 +137,28 @@ def main():
|
||||
num_warmup_steps=num_warmup_steps,
|
||||
num_training_steps=len(dataloader) * args.num_epoch)
|
||||
|
||||
# Define criterion
|
||||
def _criterion(outputs, inputs):
|
||||
outputs = output_transform_fn(outputs)
|
||||
loss = criterion(outputs)
|
||||
return loss
|
||||
|
||||
# Set booster
|
||||
booster = Booster(plugin=plugin, **booster_kwargs)
|
||||
model, optimizer, _, dataloader, lr_scheduler = booster.boost(model=model,
|
||||
optimizer=optimizer,
|
||||
dataloader=dataloader,
|
||||
lr_scheduler=lr_scheduler)
|
||||
model, optimizer, _criterion, dataloader, lr_scheduler = booster.boost(model=model,
|
||||
optimizer=optimizer,
|
||||
dataloader=dataloader,
|
||||
criterion=_criterion,
|
||||
lr_scheduler=lr_scheduler)
|
||||
|
||||
# Start finetuning
|
||||
logger.info(f"Start finetuning", ranks=[0])
|
||||
for epoch in range(args.num_epoch):
|
||||
train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator)
|
||||
train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator)
|
||||
|
||||
# Finish training and evaluate
|
||||
logger.info(f"Finish finetuning", ranks=[0])
|
||||
booster.save_model(model, args.output_path)
|
||||
booster.save_model(model, args.output_path, shard=True)
|
||||
logger.info(f"Saving model checkpoint to {args.output_path}", ranks=[0])
|
||||
|
||||
|
||||
|
@@ -9,7 +9,7 @@ OUTPUT_PATH="./output_model.bin"
|
||||
|
||||
# plugin(training strategy)
|
||||
# can only be one of "torch_ddp"/"torch_ddp_fp16"/"low_level_zero"/"gemini"
|
||||
PLUGIN="gemini"
|
||||
PLUGIN="hybrid_parallel"
|
||||
|
||||
# number of gpus to use
|
||||
GPUNUM=4
|
||||
|
Reference in New Issue
Block a user