[shardformer] update llama2/opt finetune example and fix llama2 policy (#4645)

* [shardformer] update shardformer readme

[shardformer] update shardformer readme

[shardformer] update shardformer readme

* [shardformer] update llama2/opt finetune example and shardformer update to llama2

* [shardformer] update llama2/opt finetune example and shardformer update to llama2

* [shardformer] update llama2/opt finetune example and shardformer update to llama2

* [shardformer] change dataset

* [shardformer] change dataset

* [shardformer] fix CI

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

[example] update opt example

[example] resolve comments

fix

fix
This commit is contained in:
flybird11111
2023-09-09 22:45:36 +08:00
committed by GitHub
parent a686f9ddc8
commit 7486ed7d3a
12 changed files with 165 additions and 167 deletions

View File

@@ -58,25 +58,24 @@ def evaluate_model(
model.eval()
def evaluate_subset(dataloader: DataLoader):
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
accum_loss = torch.zeros(1, device=get_current_device())
for batch in dataloader:
batch = move_to_cuda(batch)
labels = batch["labels"]
batch_size = batch["input_ids"].shape[0]
if hasattr(booster.plugin, "stage_manager") and booster.plugin.stage_manager is not None:
if use_pipeline:
pg_mesh = booster.plugin.pg_mesh
pp_group = booster.plugin.pp_group
current_pp_group_ranks = pg_mesh.get_ranks_in_group(pp_group)
current_rank = dist.get_rank()
#TODO pass dataloader to execute_pipeline directly
batch = iter([batch])
outputs = booster.execute_pipeline(batch, model, criterion, return_loss=True, return_outputs=True)
if booster.plugin.stage_manager.is_last_stage():
val_loss = outputs["loss"]
if is_pp_last_stage:
logits = outputs["outputs"]["logits"]
val_loss = outputs["loss"]
accum_loss.add_(val_loss)
if num_labels > 1:
@@ -84,19 +83,15 @@ def evaluate_model(
elif num_labels == 1:
preds = logits.squeeze()
dist.broadcast(preds, src=current_rank, group=pp_group)
dist.broadcast(val_loss, src=current_rank, group=pp_group)
dist.broadcast_object_list([preds, val_loss], src=current_pp_group_ranks[-1], group=pp_group)
metric.add_batch(predictions=preds, references=labels)
elif current_rank in current_pp_group_ranks:
val_loss = torch.empty((1,), device=get_current_device())
preds = torch.empty((batch_size,), dtype=torch.int64, device=get_current_device())
object_list = [None, None]
dist.broadcast_object_list(object_list, src=current_pp_group_ranks[-1], group=pp_group)
dist.broadcast(preds, src=current_pp_group_ranks[-1], group=pp_group)
dist.broadcast(val_loss, src=current_pp_group_ranks[-1], group=pp_group)
accum_loss.add_(val_loss)
metric.add_batch(predictions=preds, references=labels)
metric.add_batch(predictions=object_list[0].to(get_current_device()), references=labels)
accum_loss.add_(object_list[1].to(get_current_device()))
else:
batch = move_to_cuda(batch)
@@ -132,31 +127,33 @@ def evaluate_model(
def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, _criterion: Callable, lr_scheduler: LRScheduler,
train_dataloader: DataLoader, booster: Booster, coordinator: DistCoordinator):
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
total_step = len(train_dataloader)
model.train()
is_pp_last_stage = hasattr(
booster.plugin,
"stage_manager") and booster.plugin.stage_manager is not None and booster.plugin.stage_manager.is_last_stage()
with tqdm(train_dataloader,
optimizer.zero_grad()
train_dataloader_iter = iter(train_dataloader)
with tqdm(range(total_step),
desc=f'Epoch [{epoch + 1}/{NUM_EPOCHS}]',
disable=not (coordinator.is_master() or is_pp_last_stage)) as pbar:
for batch in pbar:
# Forward pass
batch = move_to_cuda(batch)
if hasattr(booster.plugin, "stage_manager") and booster.plugin.stage_manager is not None:
#TODO pass train_dataloader to execute_pipeline directly
batch = iter([batch])
outputs = booster.execute_pipeline(batch,
# Forward pass
for _ in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(train_dataloader_iter,
model,
_criterion,
optimizer,
return_loss=True,
return_outputs=True)
# Backward and optimize
if booster.plugin.stage_manager.is_last_stage():
if is_pp_last_stage:
loss = outputs['loss']
pbar.set_postfix({'loss': loss.item()})
else:
outputs = model(**batch)
data = next(train_dataloader_iter)
data = move_to_cuda(data)
outputs = model(**data)
loss = _criterion(outputs, None)
# Backward
booster.backward(loss, optimizer)