[shardformer] update llama2/opt finetune example and fix llama2 policy (#4645)

* [shardformer] update shardformer readme

[shardformer] update shardformer readme

[shardformer] update shardformer readme

* [shardformer] update llama2/opt finetune example and shardformer update to llama2

* [shardformer] update llama2/opt finetune example and shardformer update to llama2

* [shardformer] update llama2/opt finetune example and shardformer update to llama2

* [shardformer] change dataset

* [shardformer] change dataset

* [shardformer] fix CI

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

[example] update opt example

[example] resolve comments

fix

fix
This commit is contained in:
flybird11111
2023-09-09 22:45:36 +08:00
committed by GitHub
parent a686f9ddc8
commit 7486ed7d3a
12 changed files with 165 additions and 167 deletions

View File

@@ -4,117 +4,65 @@ from colossalai import get_default_parser
def parse_demo_args():
parser = get_default_parser()
parser.add_argument(
"--model_name_or_path",
type=str,
default="facebook/opt-350m",
help="Path to pretrained model or model identifier from huggingface.co/models."
)
parser.add_argument(
"--output_path",
type=str,
default="./output_model.bin",
help="The path of your saved model after finetuning."
)
parser.add_argument("--model_name_or_path",
type=str,
default="facebook/opt-350m",
help="Path to pretrained model or model identifier from huggingface.co/models.")
parser.add_argument("--output_path",
type=str,
default="./output_model.bin",
help="The path of your saved model after finetuning.")
parser.add_argument(
"--plugin",
type=str,
default="gemini",
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'."
)
parser.add_argument(
"--num_epoch",
type=int,
default=10,
help="Number of epochs."
)
parser.add_argument(
"--batch_size",
type=int,
default=32,
help="Batch size (per dp group) for the training dataloader."
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use."
)
parser.add_argument(
"--warmup_ratio",
type=float,
default=0.1,
help="Ratio of warmup steps against total training steps."
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.01,
help="Weight decay to use."
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="A seed for reproducible training."
help=
"Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero', 'hybrid_parallel'."
)
parser.add_argument("--num_epoch", type=int, default=10, help="Number of epochs.")
parser.add_argument("--batch_size",
type=int,
default=32,
help="Batch size (per dp group) for the training dataloader.")
parser.add_argument("--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.")
parser.add_argument("--warmup_ratio",
type=float,
default=0.1,
help="Ratio of warmup steps against total training steps.")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay to use.")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
args = parser.parse_args()
return args
def parse_benchmark_args():
parser = get_default_parser()
parser.add_argument(
"--model_name_or_path",
type=str,
default="facebook/opt-125m",
help="Path to pretrained model or model identifier from huggingface.co/models."
)
parser.add_argument("--model_name_or_path",
type=str,
default="facebook/opt-125m",
help="Path to pretrained model or model identifier from huggingface.co/models.")
parser.add_argument(
"--plugin",
type=str,
default="gemini",
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'."
)
parser.add_argument(
"--batch_size",
type=int,
default=32,
help="Batch size (per dp group) for the training dataloader."
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use."
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.0,
help="Weight decay to use."
)
parser.add_argument(
"--max_train_steps",
type=int,
default=20,
help="Total number of training steps to perform."
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="A seed for reproducible training."
)
parser.add_argument(
"--mem_cap",
type=int,
default=0,
help="Limit on the usage of space for each GPU (in GB)."
)
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'.")
parser.add_argument("--batch_size",
type=int,
default=32,
help="Batch size (per dp group) for the training dataloader.")
parser.add_argument("--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.")
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--max_train_steps", type=int, default=20, help="Total number of training steps to perform.")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument("--mem_cap", type=int, default=0, help="Limit on the usage of space for each GPU (in GB).")
args = parser.parse_args()
return args
return args