mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-11-23 13:40:50 +00:00
[shardformer] update llama2/opt finetune example and fix llama2 policy (#4645)
* [shardformer] update shardformer readme [shardformer] update shardformer readme [shardformer] update shardformer readme * [shardformer] update llama2/opt finetune example and shardformer update to llama2 * [shardformer] update llama2/opt finetune example and shardformer update to llama2 * [shardformer] update llama2/opt finetune example and shardformer update to llama2 * [shardformer] change dataset * [shardformer] change dataset * [shardformer] fix CI * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] fix [example] update opt example [example] resolve comments fix fix
This commit is contained in:
@@ -11,7 +11,8 @@ from transformers.utils.versions import require_version
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
||||
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
||||
from colossalai.booster.plugin.hybrid_parallel_plugin import HybridParallelModule
|
||||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
@@ -19,35 +20,54 @@ from colossalai.nn.optimizer import HybridAdam
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r requirements.txt")
|
||||
require_version("transformers>=4.20.0", "To fix: pip install -r requirements.txt")
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
criterion = lambda x: x.loss
|
||||
|
||||
|
||||
def move_to_cuda(batch, device):
|
||||
return {k: v.to(device) for k, v in batch.items()}
|
||||
|
||||
|
||||
def train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator):
|
||||
def train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator):
|
||||
|
||||
torch.cuda.synchronize()
|
||||
|
||||
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
|
||||
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
|
||||
total_step = len(dataloader)
|
||||
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
dataloader = iter(dataloader)
|
||||
with tqdm(range(total_step), desc=f'Epoch [{epoch + 1}]',
|
||||
disable=not (coordinator.is_master() or is_pp_last_stage)) as pbar:
|
||||
|
||||
with tqdm(dataloader, desc=f'Epoch [{epoch + 1}]', disable=not coordinator.is_master()) as pbar:
|
||||
# Forward pass
|
||||
for _ in pbar:
|
||||
if use_pipeline:
|
||||
outputs = booster.execute_pipeline(dataloader,
|
||||
model,
|
||||
_criterion,
|
||||
optimizer,
|
||||
return_loss=True,
|
||||
return_outputs=True)
|
||||
# Backward and optimize
|
||||
if is_pp_last_stage:
|
||||
loss = outputs['loss']
|
||||
pbar.set_postfix({'loss': loss.item()})
|
||||
else:
|
||||
data = next(dataloader)
|
||||
data = move_to_cuda(data)
|
||||
outputs = model(**data)
|
||||
loss = _criterion(outputs, None)
|
||||
# Backward
|
||||
booster.backward(loss, optimizer)
|
||||
pbar.set_postfix({'loss': loss.item()})
|
||||
|
||||
for batch in pbar:
|
||||
|
||||
# Forward
|
||||
optimizer.zero_grad()
|
||||
batch = move_to_cuda(batch, torch.cuda.current_device())
|
||||
|
||||
outputs = model(use_cache=False, **batch)
|
||||
loss = outputs['loss']
|
||||
|
||||
# Backward
|
||||
booster.backward(loss, optimizer)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
# Print batch loss
|
||||
pbar.set_postfix({'loss': loss.item()})
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
@@ -86,6 +106,16 @@ def main():
|
||||
plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5)
|
||||
elif args.plugin == 'low_level_zero':
|
||||
plugin = LowLevelZeroPlugin(initial_scale=2**5)
|
||||
elif args.plugin == 'hybrid_parallel':
|
||||
# modify the param accordingly for finetuning test cases
|
||||
plugin = HybridParallelPlugin(tp_size=2,
|
||||
pp_size=2,
|
||||
num_microbatches=2,
|
||||
enable_all_optimization=True,
|
||||
zero_stage=0,
|
||||
precision='fp16',
|
||||
initial_scale=1)
|
||||
|
||||
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
|
||||
|
||||
# Prepare tokenizer and dataloader
|
||||
@@ -107,21 +137,28 @@ def main():
|
||||
num_warmup_steps=num_warmup_steps,
|
||||
num_training_steps=len(dataloader) * args.num_epoch)
|
||||
|
||||
# Define criterion
|
||||
def _criterion(outputs, inputs):
|
||||
outputs = output_transform_fn(outputs)
|
||||
loss = criterion(outputs)
|
||||
return loss
|
||||
|
||||
# Set booster
|
||||
booster = Booster(plugin=plugin, **booster_kwargs)
|
||||
model, optimizer, _, dataloader, lr_scheduler = booster.boost(model=model,
|
||||
optimizer=optimizer,
|
||||
dataloader=dataloader,
|
||||
lr_scheduler=lr_scheduler)
|
||||
model, optimizer, _criterion, dataloader, lr_scheduler = booster.boost(model=model,
|
||||
optimizer=optimizer,
|
||||
dataloader=dataloader,
|
||||
criterion=_criterion,
|
||||
lr_scheduler=lr_scheduler)
|
||||
|
||||
# Start finetuning
|
||||
logger.info(f"Start finetuning", ranks=[0])
|
||||
for epoch in range(args.num_epoch):
|
||||
train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator)
|
||||
train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator)
|
||||
|
||||
# Finish training and evaluate
|
||||
logger.info(f"Finish finetuning", ranks=[0])
|
||||
booster.save_model(model, args.output_path)
|
||||
booster.save_model(model, args.output_path, shard=True)
|
||||
logger.info(f"Saving model checkpoint to {args.output_path}", ranks=[0])
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user