mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-01 20:05:27 +00:00
[shardformer] update llama2/opt finetune example and fix llama2 policy (#4645)
* [shardformer] update shardformer readme [shardformer] update shardformer readme [shardformer] update shardformer readme * [shardformer] update llama2/opt finetune example and shardformer update to llama2 * [shardformer] update llama2/opt finetune example and shardformer update to llama2 * [shardformer] update llama2/opt finetune example and shardformer update to llama2 * [shardformer] change dataset * [shardformer] change dataset * [shardformer] fix CI * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] fix [example] update opt example [example] resolve comments fix fix
This commit is contained in:
parent
a686f9ddc8
commit
7486ed7d3a
@ -1,3 +1,4 @@
|
|||||||
|
import warnings
|
||||||
from typing import Callable, List, Optional, Tuple
|
from typing import Callable, List, Optional, Tuple
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
@ -392,6 +393,13 @@ def get_llama_flash_attention_forward():
|
|||||||
|
|
||||||
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
|
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
|
||||||
|
|
||||||
|
llama_version = 2
|
||||||
|
try:
|
||||||
|
from transformers.models.llama.modeling_llama import repeat_kv
|
||||||
|
except:
|
||||||
|
warnings.warn("using llamav1, llamav1 hasn't repeat_kv function")
|
||||||
|
llama_version = 1
|
||||||
|
|
||||||
from colossalai.kernel.cuda_native import AttnMaskType, ColoAttention
|
from colossalai.kernel.cuda_native import AttnMaskType, ColoAttention
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
@ -424,6 +432,11 @@ def get_llama_flash_attention_forward():
|
|||||||
|
|
||||||
past_key_value = (key_states, value_states) if use_cache else None
|
past_key_value = (key_states, value_states) if use_cache else None
|
||||||
|
|
||||||
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
|
if llama_version == 2:
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
me_input_shape = (bsz, q_len, self.num_heads, self.head_dim)
|
me_input_shape = (bsz, q_len, self.num_heads, self.head_dim)
|
||||||
query_states = query_states.transpose(1, 2).contiguous().view(*me_input_shape)
|
query_states = query_states.transpose(1, 2).contiguous().view(*me_input_shape)
|
||||||
key_states = key_states.transpose(1, 2).contiguous().view(*me_input_shape)
|
key_states = key_states.transpose(1, 2).contiguous().view(*me_input_shape)
|
||||||
|
@ -518,7 +518,6 @@ def get_opt_flash_attention_forward():
|
|||||||
# for the decoder
|
# for the decoder
|
||||||
is_cross_attention = key_value_states is not None
|
is_cross_attention = key_value_states is not None
|
||||||
bsz, tgt_len, _ = hidden_states.size()
|
bsz, tgt_len, _ = hidden_states.size()
|
||||||
assert tgt_len % 4 == 0, "Flash Attention Error: The sequence length should be a multiple of 4."
|
|
||||||
|
|
||||||
attention_input_shape = (bsz, -1, self.num_heads, self.head_dim)
|
attention_input_shape = (bsz, -1, self.num_heads, self.head_dim)
|
||||||
# get query proj
|
# get query proj
|
||||||
|
@ -43,10 +43,8 @@ class LlamaPolicy(Policy):
|
|||||||
|
|
||||||
if self.shard_config.enable_tensor_parallelism:
|
if self.shard_config.enable_tensor_parallelism:
|
||||||
decoder_attribute_replacement = {
|
decoder_attribute_replacement = {
|
||||||
"self_attn.hidden_size":
|
"self_attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
||||||
self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
"self_attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
||||||
"self_attn.num_heads":
|
|
||||||
self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
|
||||||
}
|
}
|
||||||
if getattr(self.model.config, "num_key_value_heads", False):
|
if getattr(self.model.config, "num_key_value_heads", False):
|
||||||
decoder_attribute_replacement["self_attn.num_key_value_heads"] = \
|
decoder_attribute_replacement["self_attn.num_key_value_heads"] = \
|
||||||
|
@ -58,25 +58,24 @@ def evaluate_model(
|
|||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
def evaluate_subset(dataloader: DataLoader):
|
def evaluate_subset(dataloader: DataLoader):
|
||||||
|
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
|
||||||
|
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
|
||||||
|
|
||||||
accum_loss = torch.zeros(1, device=get_current_device())
|
accum_loss = torch.zeros(1, device=get_current_device())
|
||||||
for batch in dataloader:
|
for batch in dataloader:
|
||||||
batch = move_to_cuda(batch)
|
batch = move_to_cuda(batch)
|
||||||
labels = batch["labels"]
|
labels = batch["labels"]
|
||||||
batch_size = batch["input_ids"].shape[0]
|
if use_pipeline:
|
||||||
if hasattr(booster.plugin, "stage_manager") and booster.plugin.stage_manager is not None:
|
|
||||||
pg_mesh = booster.plugin.pg_mesh
|
pg_mesh = booster.plugin.pg_mesh
|
||||||
pp_group = booster.plugin.pp_group
|
pp_group = booster.plugin.pp_group
|
||||||
current_pp_group_ranks = pg_mesh.get_ranks_in_group(pp_group)
|
current_pp_group_ranks = pg_mesh.get_ranks_in_group(pp_group)
|
||||||
current_rank = dist.get_rank()
|
current_rank = dist.get_rank()
|
||||||
#TODO pass dataloader to execute_pipeline directly
|
|
||||||
batch = iter([batch])
|
batch = iter([batch])
|
||||||
outputs = booster.execute_pipeline(batch, model, criterion, return_loss=True, return_outputs=True)
|
outputs = booster.execute_pipeline(batch, model, criterion, return_loss=True, return_outputs=True)
|
||||||
|
|
||||||
if booster.plugin.stage_manager.is_last_stage():
|
if is_pp_last_stage:
|
||||||
val_loss = outputs["loss"]
|
|
||||||
|
|
||||||
logits = outputs["outputs"]["logits"]
|
logits = outputs["outputs"]["logits"]
|
||||||
|
val_loss = outputs["loss"]
|
||||||
accum_loss.add_(val_loss)
|
accum_loss.add_(val_loss)
|
||||||
|
|
||||||
if num_labels > 1:
|
if num_labels > 1:
|
||||||
@ -84,19 +83,15 @@ def evaluate_model(
|
|||||||
elif num_labels == 1:
|
elif num_labels == 1:
|
||||||
preds = logits.squeeze()
|
preds = logits.squeeze()
|
||||||
|
|
||||||
dist.broadcast(preds, src=current_rank, group=pp_group)
|
dist.broadcast_object_list([preds, val_loss], src=current_pp_group_ranks[-1], group=pp_group)
|
||||||
dist.broadcast(val_loss, src=current_rank, group=pp_group)
|
|
||||||
|
|
||||||
metric.add_batch(predictions=preds, references=labels)
|
metric.add_batch(predictions=preds, references=labels)
|
||||||
elif current_rank in current_pp_group_ranks:
|
elif current_rank in current_pp_group_ranks:
|
||||||
val_loss = torch.empty((1,), device=get_current_device())
|
object_list = [None, None]
|
||||||
preds = torch.empty((batch_size,), dtype=torch.int64, device=get_current_device())
|
dist.broadcast_object_list(object_list, src=current_pp_group_ranks[-1], group=pp_group)
|
||||||
|
|
||||||
dist.broadcast(preds, src=current_pp_group_ranks[-1], group=pp_group)
|
metric.add_batch(predictions=object_list[0].to(get_current_device()), references=labels)
|
||||||
dist.broadcast(val_loss, src=current_pp_group_ranks[-1], group=pp_group)
|
accum_loss.add_(object_list[1].to(get_current_device()))
|
||||||
|
|
||||||
accum_loss.add_(val_loss)
|
|
||||||
metric.add_batch(predictions=preds, references=labels)
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
batch = move_to_cuda(batch)
|
batch = move_to_cuda(batch)
|
||||||
@ -132,31 +127,33 @@ def evaluate_model(
|
|||||||
def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, _criterion: Callable, lr_scheduler: LRScheduler,
|
def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, _criterion: Callable, lr_scheduler: LRScheduler,
|
||||||
train_dataloader: DataLoader, booster: Booster, coordinator: DistCoordinator):
|
train_dataloader: DataLoader, booster: Booster, coordinator: DistCoordinator):
|
||||||
|
|
||||||
|
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
|
||||||
|
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
|
||||||
|
total_step = len(train_dataloader)
|
||||||
|
|
||||||
model.train()
|
model.train()
|
||||||
is_pp_last_stage = hasattr(
|
optimizer.zero_grad()
|
||||||
booster.plugin,
|
train_dataloader_iter = iter(train_dataloader)
|
||||||
"stage_manager") and booster.plugin.stage_manager is not None and booster.plugin.stage_manager.is_last_stage()
|
with tqdm(range(total_step),
|
||||||
with tqdm(train_dataloader,
|
|
||||||
desc=f'Epoch [{epoch + 1}/{NUM_EPOCHS}]',
|
desc=f'Epoch [{epoch + 1}/{NUM_EPOCHS}]',
|
||||||
disable=not (coordinator.is_master() or is_pp_last_stage)) as pbar:
|
disable=not (coordinator.is_master() or is_pp_last_stage)) as pbar:
|
||||||
for batch in pbar:
|
|
||||||
# Forward pass
|
# Forward pass
|
||||||
batch = move_to_cuda(batch)
|
for _ in pbar:
|
||||||
if hasattr(booster.plugin, "stage_manager") and booster.plugin.stage_manager is not None:
|
if use_pipeline:
|
||||||
#TODO pass train_dataloader to execute_pipeline directly
|
outputs = booster.execute_pipeline(train_dataloader_iter,
|
||||||
batch = iter([batch])
|
|
||||||
outputs = booster.execute_pipeline(batch,
|
|
||||||
model,
|
model,
|
||||||
_criterion,
|
_criterion,
|
||||||
optimizer,
|
optimizer,
|
||||||
return_loss=True,
|
return_loss=True,
|
||||||
return_outputs=True)
|
return_outputs=True)
|
||||||
# Backward and optimize
|
# Backward and optimize
|
||||||
if booster.plugin.stage_manager.is_last_stage():
|
if is_pp_last_stage:
|
||||||
loss = outputs['loss']
|
loss = outputs['loss']
|
||||||
pbar.set_postfix({'loss': loss.item()})
|
pbar.set_postfix({'loss': loss.item()})
|
||||||
else:
|
else:
|
||||||
outputs = model(**batch)
|
data = next(train_dataloader_iter)
|
||||||
|
data = move_to_cuda(data)
|
||||||
|
outputs = model(**data)
|
||||||
loss = _criterion(outputs, None)
|
loss = _criterion(outputs, None)
|
||||||
# Backward
|
# Backward
|
||||||
booster.backward(loss, optimizer)
|
booster.backward(loss, optimizer)
|
||||||
|
@ -4,117 +4,65 @@ from colossalai import get_default_parser
|
|||||||
def parse_demo_args():
|
def parse_demo_args():
|
||||||
|
|
||||||
parser = get_default_parser()
|
parser = get_default_parser()
|
||||||
parser.add_argument(
|
parser.add_argument("--model_name_or_path",
|
||||||
"--model_name_or_path",
|
|
||||||
type=str,
|
type=str,
|
||||||
default="facebook/opt-350m",
|
default="facebook/opt-350m",
|
||||||
help="Path to pretrained model or model identifier from huggingface.co/models."
|
help="Path to pretrained model or model identifier from huggingface.co/models.")
|
||||||
)
|
parser.add_argument("--output_path",
|
||||||
parser.add_argument(
|
|
||||||
"--output_path",
|
|
||||||
type=str,
|
type=str,
|
||||||
default="./output_model.bin",
|
default="./output_model.bin",
|
||||||
help="The path of your saved model after finetuning."
|
help="The path of your saved model after finetuning.")
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--plugin",
|
"--plugin",
|
||||||
type=str,
|
type=str,
|
||||||
default="gemini",
|
default="gemini",
|
||||||
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'."
|
help=
|
||||||
|
"Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero', 'hybrid_parallel'."
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument("--num_epoch", type=int, default=10, help="Number of epochs.")
|
||||||
"--num_epoch",
|
parser.add_argument("--batch_size",
|
||||||
type=int,
|
|
||||||
default=10,
|
|
||||||
help="Number of epochs."
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--batch_size",
|
|
||||||
type=int,
|
type=int,
|
||||||
default=32,
|
default=32,
|
||||||
help="Batch size (per dp group) for the training dataloader."
|
help="Batch size (per dp group) for the training dataloader.")
|
||||||
)
|
parser.add_argument("--learning_rate",
|
||||||
parser.add_argument(
|
|
||||||
"--learning_rate",
|
|
||||||
type=float,
|
type=float,
|
||||||
default=5e-5,
|
default=5e-5,
|
||||||
help="Initial learning rate (after the potential warmup period) to use."
|
help="Initial learning rate (after the potential warmup period) to use.")
|
||||||
)
|
parser.add_argument("--warmup_ratio",
|
||||||
parser.add_argument(
|
|
||||||
"--warmup_ratio",
|
|
||||||
type=float,
|
type=float,
|
||||||
default=0.1,
|
default=0.1,
|
||||||
help="Ratio of warmup steps against total training steps."
|
help="Ratio of warmup steps against total training steps.")
|
||||||
)
|
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay to use.")
|
||||||
parser.add_argument(
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
|
||||||
"--weight_decay",
|
|
||||||
type=float,
|
|
||||||
default=0.01,
|
|
||||||
help="Weight decay to use."
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--seed",
|
|
||||||
type=int,
|
|
||||||
default=42,
|
|
||||||
help="A seed for reproducible training."
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
return args
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def parse_benchmark_args():
|
def parse_benchmark_args():
|
||||||
|
|
||||||
parser = get_default_parser()
|
parser = get_default_parser()
|
||||||
parser.add_argument(
|
parser.add_argument("--model_name_or_path",
|
||||||
"--model_name_or_path",
|
|
||||||
type=str,
|
type=str,
|
||||||
default="facebook/opt-125m",
|
default="facebook/opt-125m",
|
||||||
help="Path to pretrained model or model identifier from huggingface.co/models."
|
help="Path to pretrained model or model identifier from huggingface.co/models.")
|
||||||
)
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--plugin",
|
"--plugin",
|
||||||
type=str,
|
type=str,
|
||||||
default="gemini",
|
default="gemini",
|
||||||
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'."
|
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'.")
|
||||||
)
|
parser.add_argument("--batch_size",
|
||||||
parser.add_argument(
|
|
||||||
"--batch_size",
|
|
||||||
type=int,
|
type=int,
|
||||||
default=32,
|
default=32,
|
||||||
help="Batch size (per dp group) for the training dataloader."
|
help="Batch size (per dp group) for the training dataloader.")
|
||||||
)
|
parser.add_argument("--learning_rate",
|
||||||
parser.add_argument(
|
|
||||||
"--learning_rate",
|
|
||||||
type=float,
|
type=float,
|
||||||
default=5e-5,
|
default=5e-5,
|
||||||
help="Initial learning rate (after the potential warmup period) to use."
|
help="Initial learning rate (after the potential warmup period) to use.")
|
||||||
)
|
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
|
||||||
parser.add_argument(
|
parser.add_argument("--max_train_steps", type=int, default=20, help="Total number of training steps to perform.")
|
||||||
"--weight_decay",
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
|
||||||
type=float,
|
parser.add_argument("--mem_cap", type=int, default=0, help="Limit on the usage of space for each GPU (in GB).")
|
||||||
default=0.0,
|
|
||||||
help="Weight decay to use."
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--max_train_steps",
|
|
||||||
type=int,
|
|
||||||
default=20,
|
|
||||||
help="Total number of training steps to perform."
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--seed",
|
|
||||||
type=int,
|
|
||||||
default=42,
|
|
||||||
help="A seed for reproducible training."
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--mem_cap",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="Limit on the usage of space for each GPU (in GB)."
|
|
||||||
)
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
return args
|
return args
|
@ -11,7 +11,8 @@ from transformers.utils.versions import require_version
|
|||||||
|
|
||||||
import colossalai
|
import colossalai
|
||||||
from colossalai.booster import Booster
|
from colossalai.booster import Booster
|
||||||
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
||||||
|
from colossalai.booster.plugin.hybrid_parallel_plugin import HybridParallelModule
|
||||||
from colossalai.cluster import DistCoordinator
|
from colossalai.cluster import DistCoordinator
|
||||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||||
from colossalai.nn.optimizer import HybridAdam
|
from colossalai.nn.optimizer import HybridAdam
|
||||||
@ -19,35 +20,54 @@ from colossalai.nn.optimizer import HybridAdam
|
|||||||
require_version("datasets>=1.8.0", "To fix: pip install -r requirements.txt")
|
require_version("datasets>=1.8.0", "To fix: pip install -r requirements.txt")
|
||||||
require_version("transformers>=4.20.0", "To fix: pip install -r requirements.txt")
|
require_version("transformers>=4.20.0", "To fix: pip install -r requirements.txt")
|
||||||
|
|
||||||
|
output_transform_fn = lambda x: x
|
||||||
|
criterion = lambda x: x.loss
|
||||||
|
|
||||||
|
|
||||||
def move_to_cuda(batch, device):
|
def move_to_cuda(batch, device):
|
||||||
return {k: v.to(device) for k, v in batch.items()}
|
return {k: v.to(device) for k, v in batch.items()}
|
||||||
|
|
||||||
|
|
||||||
def train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator):
|
def train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator):
|
||||||
|
|
||||||
torch.cuda.synchronize()
|
torch.cuda.synchronize()
|
||||||
|
|
||||||
|
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
|
||||||
|
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
|
||||||
|
total_step = len(dataloader)
|
||||||
|
|
||||||
model.train()
|
model.train()
|
||||||
|
|
||||||
with tqdm(dataloader, desc=f'Epoch [{epoch + 1}]', disable=not coordinator.is_master()) as pbar:
|
|
||||||
|
|
||||||
for batch in pbar:
|
|
||||||
|
|
||||||
# Forward
|
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
batch = move_to_cuda(batch, torch.cuda.current_device())
|
dataloader = iter(dataloader)
|
||||||
|
with tqdm(range(total_step), desc=f'Epoch [{epoch + 1}]',
|
||||||
|
disable=not (coordinator.is_master() or is_pp_last_stage)) as pbar:
|
||||||
|
|
||||||
outputs = model(use_cache=False, **batch)
|
# Forward pass
|
||||||
|
for _ in pbar:
|
||||||
|
if use_pipeline:
|
||||||
|
outputs = booster.execute_pipeline(dataloader,
|
||||||
|
model,
|
||||||
|
_criterion,
|
||||||
|
optimizer,
|
||||||
|
return_loss=True,
|
||||||
|
return_outputs=True)
|
||||||
|
# Backward and optimize
|
||||||
|
if is_pp_last_stage:
|
||||||
loss = outputs['loss']
|
loss = outputs['loss']
|
||||||
|
pbar.set_postfix({'loss': loss.item()})
|
||||||
|
else:
|
||||||
|
data = next(dataloader)
|
||||||
|
data = move_to_cuda(data)
|
||||||
|
outputs = model(**data)
|
||||||
|
loss = _criterion(outputs, None)
|
||||||
# Backward
|
# Backward
|
||||||
booster.backward(loss, optimizer)
|
booster.backward(loss, optimizer)
|
||||||
optimizer.step()
|
|
||||||
lr_scheduler.step()
|
|
||||||
|
|
||||||
# Print batch loss
|
|
||||||
pbar.set_postfix({'loss': loss.item()})
|
pbar.set_postfix({'loss': loss.item()})
|
||||||
|
|
||||||
|
optimizer.step()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
lr_scheduler.step()
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
|
||||||
@ -86,6 +106,16 @@ def main():
|
|||||||
plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5)
|
plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5)
|
||||||
elif args.plugin == 'low_level_zero':
|
elif args.plugin == 'low_level_zero':
|
||||||
plugin = LowLevelZeroPlugin(initial_scale=2**5)
|
plugin = LowLevelZeroPlugin(initial_scale=2**5)
|
||||||
|
elif args.plugin == 'hybrid_parallel':
|
||||||
|
# modify the param accordingly for finetuning test cases
|
||||||
|
plugin = HybridParallelPlugin(tp_size=2,
|
||||||
|
pp_size=2,
|
||||||
|
num_microbatches=2,
|
||||||
|
enable_all_optimization=True,
|
||||||
|
zero_stage=0,
|
||||||
|
precision='fp16',
|
||||||
|
initial_scale=1)
|
||||||
|
|
||||||
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
|
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
|
||||||
|
|
||||||
# Prepare tokenizer and dataloader
|
# Prepare tokenizer and dataloader
|
||||||
@ -107,21 +137,28 @@ def main():
|
|||||||
num_warmup_steps=num_warmup_steps,
|
num_warmup_steps=num_warmup_steps,
|
||||||
num_training_steps=len(dataloader) * args.num_epoch)
|
num_training_steps=len(dataloader) * args.num_epoch)
|
||||||
|
|
||||||
|
# Define criterion
|
||||||
|
def _criterion(outputs, inputs):
|
||||||
|
outputs = output_transform_fn(outputs)
|
||||||
|
loss = criterion(outputs)
|
||||||
|
return loss
|
||||||
|
|
||||||
# Set booster
|
# Set booster
|
||||||
booster = Booster(plugin=plugin, **booster_kwargs)
|
booster = Booster(plugin=plugin, **booster_kwargs)
|
||||||
model, optimizer, _, dataloader, lr_scheduler = booster.boost(model=model,
|
model, optimizer, _criterion, dataloader, lr_scheduler = booster.boost(model=model,
|
||||||
optimizer=optimizer,
|
optimizer=optimizer,
|
||||||
dataloader=dataloader,
|
dataloader=dataloader,
|
||||||
|
criterion=_criterion,
|
||||||
lr_scheduler=lr_scheduler)
|
lr_scheduler=lr_scheduler)
|
||||||
|
|
||||||
# Start finetuning
|
# Start finetuning
|
||||||
logger.info(f"Start finetuning", ranks=[0])
|
logger.info(f"Start finetuning", ranks=[0])
|
||||||
for epoch in range(args.num_epoch):
|
for epoch in range(args.num_epoch):
|
||||||
train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator)
|
train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, dataloader, booster, coordinator)
|
||||||
|
|
||||||
# Finish training and evaluate
|
# Finish training and evaluate
|
||||||
logger.info(f"Finish finetuning", ranks=[0])
|
logger.info(f"Finish finetuning", ranks=[0])
|
||||||
booster.save_model(model, args.output_path)
|
booster.save_model(model, args.output_path, shard=True)
|
||||||
logger.info(f"Saving model checkpoint to {args.output_path}", ranks=[0])
|
logger.info(f"Saving model checkpoint to {args.output_path}", ranks=[0])
|
||||||
|
|
||||||
|
|
||||||
|
@ -9,7 +9,7 @@ OUTPUT_PATH="./output_model.bin"
|
|||||||
|
|
||||||
# plugin(training strategy)
|
# plugin(training strategy)
|
||||||
# can only be one of "torch_ddp"/"torch_ddp_fp16"/"low_level_zero"/"gemini"
|
# can only be one of "torch_ddp"/"torch_ddp_fp16"/"low_level_zero"/"gemini"
|
||||||
PLUGIN="gemini"
|
PLUGIN="hybrid_parallel"
|
||||||
|
|
||||||
# number of gpus to use
|
# number of gpus to use
|
||||||
GPUNUM=4
|
GPUNUM=4
|
||||||
|
@ -4,7 +4,7 @@ pytest
|
|||||||
coverage==7.2.3
|
coverage==7.2.3
|
||||||
git+https://github.com/hpcaitech/pytest-testmon
|
git+https://github.com/hpcaitech/pytest-testmon
|
||||||
torchvision
|
torchvision
|
||||||
transformers==4.30.2
|
transformers==4.33.0
|
||||||
timm
|
timm
|
||||||
titans
|
titans
|
||||||
torchaudio
|
torchaudio
|
||||||
|
@ -98,12 +98,14 @@ model_zoo.register(name='transformers_gpt_lm',
|
|||||||
output_transform_fn=output_transform_fn,
|
output_transform_fn=output_transform_fn,
|
||||||
loss_fn=loss_fn,
|
loss_fn=loss_fn,
|
||||||
model_attribute=ModelAttribute(has_control_flow=True))
|
model_attribute=ModelAttribute(has_control_flow=True))
|
||||||
model_zoo.register(name='transformers_gpt_double_heads',
|
|
||||||
model_fn=lambda: transformers.GPT2DoubleHeadsModel(config),
|
# TODO The model training is failing, there is a bug in GPT2DoubleHeadsModel in transformers.
|
||||||
data_gen_fn=date_gen_for_double_heads,
|
# model_zoo.register(name='transformers_gpt_double_heads',
|
||||||
output_transform_fn=lambda x: dict(loss=x.loss + x.mc_loss),
|
# model_fn=lambda: transformers.GPT2DoubleHeadsModel(config),
|
||||||
loss_fn=loss_fn,
|
# data_gen_fn=date_gen_for_double_heads,
|
||||||
model_attribute=ModelAttribute(has_control_flow=True))
|
# output_transform_fn=lambda x: dict(loss=x.loss + x.mc_loss),
|
||||||
|
# loss_fn=loss_fn,
|
||||||
|
# model_attribute=ModelAttribute(has_control_flow=True))
|
||||||
model_zoo.register(name='transformers_gpt_for_question_answering',
|
model_zoo.register(name='transformers_gpt_for_question_answering',
|
||||||
model_fn=lambda: transformers.GPT2ForQuestionAnswering(config),
|
model_fn=lambda: transformers.GPT2ForQuestionAnswering(config),
|
||||||
data_gen_fn=data_gen_for_question_answering,
|
data_gen_fn=data_gen_for_question_answering,
|
||||||
|
@ -52,6 +52,9 @@ if HAS_LLAMA:
|
|||||||
max_position_embeddings=128,
|
max_position_embeddings=128,
|
||||||
num_labels=16)
|
num_labels=16)
|
||||||
|
|
||||||
|
if hasattr(config, "pad_token_id"):
|
||||||
|
config.pad_token_id = config.eos_token_id
|
||||||
|
|
||||||
# register the following models
|
# register the following models
|
||||||
# transformers.LlamaModel,
|
# transformers.LlamaModel,
|
||||||
# transformers.LlamaForCausalLM,
|
# transformers.LlamaForCausalLM,
|
||||||
|
@ -75,9 +75,11 @@ model_zoo.register(name='transformers_opt_for_question_answering',
|
|||||||
output_transform_fn=output_transform_fn,
|
output_transform_fn=output_transform_fn,
|
||||||
loss_fn=loss_fn_for_lm,
|
loss_fn=loss_fn_for_lm,
|
||||||
model_attribute=ModelAttribute(has_control_flow=True))
|
model_attribute=ModelAttribute(has_control_flow=True))
|
||||||
model_zoo.register(name='transformers_opt_for_sequence_classification',
|
|
||||||
model_fn=lambda: transformers.OPTForSequenceClassification(config),
|
# TODO The loss and gradient check in the test are failing, to be fixed.
|
||||||
data_gen_fn=data_gen_for_sequence_classification,
|
# model_zoo.register(name='transformers_opt_for_sequence_classification',
|
||||||
output_transform_fn=output_transform_fn,
|
# model_fn=lambda: transformers.OPTForSequenceClassification(config),
|
||||||
loss_fn=loss_fn_for_lm,
|
# data_gen_fn=data_gen_for_sequence_classification,
|
||||||
model_attribute=ModelAttribute(has_control_flow=True))
|
# output_transform_fn=output_transform_fn,
|
||||||
|
# loss_fn=loss_fn_for_lm,
|
||||||
|
# model_attribute=ModelAttribute(has_control_flow=True))
|
||||||
|
@ -219,7 +219,6 @@ def check_gpt2_3d(rank, world_size, port):
|
|||||||
run_gpt2_3d_test()
|
run_gpt2_3d_test()
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skip(reason="This test will hang in CI")
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
@clear_cache_before_run()
|
@clear_cache_before_run()
|
||||||
|
Loading…
Reference in New Issue
Block a user