[Fix] Llama3 Load/Omit CheckpointIO Temporarily (#5717)

* Fix Llama3 Load error
* Omit Checkpoint IO Temporarily
This commit is contained in:
Runyu Lu
2024-05-14 20:17:43 +08:00
committed by GitHub
parent 5bbab1533a
commit 74c47921fa
3 changed files with 65 additions and 62 deletions

View File

@@ -24,7 +24,7 @@ from colossalai.inference.modeling.policy import model_policy_map
from colossalai.inference.sampler import search_tokens
from colossalai.inference.spec import Drafter, GlideInput
from colossalai.inference.struct import Sequence
from colossalai.inference.utils import get_model_size, has_index_file
from colossalai.inference.utils import get_model_size
from colossalai.interface import ModelWrapper
from colossalai.logging import get_dist_logger
from colossalai.pipeline.stage_manager import PipelineStageManager
@@ -113,18 +113,15 @@ class InferenceEngine:
model_policy (Policy): the policy to replace the model
"""
casuallm = None
if isinstance(model_or_path, str):
try:
hf_config = AutoConfig.from_pretrained(model_or_path, trust_remote_code=True)
arch = getattr(hf_config, "architectures")[0]
if arch in _supported_models.keys():
casuallm = _supported_models[arch](hf_config)
if isinstance(casuallm, AutoModelForCausalLM):
# NOTE(caidi) It's necessary to add half() here, otherwise baichuan13B will overflow the memory.
model = AutoModelForCausalLM.from_pretrained(model_or_path, trust_remote_code=True).half()
else:
model = _supported_models[arch](hf_config)
# NOTE(lry89757) Currently we load the model using transformers-api,
# but we will use lazy tensor and checkpoint io to accelerate
# the model load process in the future.
model = _supported_models[arch].from_pretrained(model_or_path, trust_remote_code=True)
else:
raise ValueError(f"Model {arch} is not supported.")
@@ -175,13 +172,14 @@ class InferenceEngine:
f"After the shard, Rank: [{dist.get_rank()}], model size: {get_model_size(self.model)} GB, model's device is: {model.device}"
)
if isinstance(model_or_path, str) and not isinstance(casuallm, AutoModelForCausalLM):
from colossalai.inference.core.plugin import InferCheckpoint_io
# NOTE(lry89757) Deprecated currently, will reused when introduce lazy tensor
# if isinstance(model_or_path, str) and not isinstance(casuallm, AutoModelForCausalLM):
# from colossalai.inference.core.plugin import InferCheckpoint_io
cpt_io = InferCheckpoint_io()
if_has_index_file, model_index_file = has_index_file(model_or_path)
assert if_has_index_file, "the model path is invalid"
cpt_io.load_model(self.model, model_index_file)
# cpt_io = InferCheckpoint_io()
# if_has_index_file, model_index_file = has_index_file(model_or_path)
# assert if_has_index_file, "the model path is invalid"
# cpt_io.load_model(self.model, model_index_file)
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
peak_memory = init_gpu_memory - free_gpu_memory