mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-20 12:43:55 +00:00
[Fix] Llama3 Load/Omit CheckpointIO Temporarily (#5717)
* Fix Llama3 Load error * Omit Checkpoint IO Temporarily
This commit is contained in:
parent
5bbab1533a
commit
74c47921fa
@ -24,7 +24,7 @@ from colossalai.inference.modeling.policy import model_policy_map
|
|||||||
from colossalai.inference.sampler import search_tokens
|
from colossalai.inference.sampler import search_tokens
|
||||||
from colossalai.inference.spec import Drafter, GlideInput
|
from colossalai.inference.spec import Drafter, GlideInput
|
||||||
from colossalai.inference.struct import Sequence
|
from colossalai.inference.struct import Sequence
|
||||||
from colossalai.inference.utils import get_model_size, has_index_file
|
from colossalai.inference.utils import get_model_size
|
||||||
from colossalai.interface import ModelWrapper
|
from colossalai.interface import ModelWrapper
|
||||||
from colossalai.logging import get_dist_logger
|
from colossalai.logging import get_dist_logger
|
||||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||||
@ -113,18 +113,15 @@ class InferenceEngine:
|
|||||||
model_policy (Policy): the policy to replace the model
|
model_policy (Policy): the policy to replace the model
|
||||||
"""
|
"""
|
||||||
|
|
||||||
casuallm = None
|
|
||||||
if isinstance(model_or_path, str):
|
if isinstance(model_or_path, str):
|
||||||
try:
|
try:
|
||||||
hf_config = AutoConfig.from_pretrained(model_or_path, trust_remote_code=True)
|
hf_config = AutoConfig.from_pretrained(model_or_path, trust_remote_code=True)
|
||||||
arch = getattr(hf_config, "architectures")[0]
|
arch = getattr(hf_config, "architectures")[0]
|
||||||
if arch in _supported_models.keys():
|
if arch in _supported_models.keys():
|
||||||
casuallm = _supported_models[arch](hf_config)
|
# NOTE(lry89757) Currently we load the model using transformers-api,
|
||||||
if isinstance(casuallm, AutoModelForCausalLM):
|
# but we will use lazy tensor and checkpoint io to accelerate
|
||||||
# NOTE(caidi) It's necessary to add half() here, otherwise baichuan13B will overflow the memory.
|
# the model load process in the future.
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_or_path, trust_remote_code=True).half()
|
model = _supported_models[arch].from_pretrained(model_or_path, trust_remote_code=True)
|
||||||
else:
|
|
||||||
model = _supported_models[arch](hf_config)
|
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Model {arch} is not supported.")
|
raise ValueError(f"Model {arch} is not supported.")
|
||||||
|
|
||||||
@ -175,13 +172,14 @@ class InferenceEngine:
|
|||||||
f"After the shard, Rank: [{dist.get_rank()}], model size: {get_model_size(self.model)} GB, model's device is: {model.device}"
|
f"After the shard, Rank: [{dist.get_rank()}], model size: {get_model_size(self.model)} GB, model's device is: {model.device}"
|
||||||
)
|
)
|
||||||
|
|
||||||
if isinstance(model_or_path, str) and not isinstance(casuallm, AutoModelForCausalLM):
|
# NOTE(lry89757) Deprecated currently, will reused when introduce lazy tensor
|
||||||
from colossalai.inference.core.plugin import InferCheckpoint_io
|
# if isinstance(model_or_path, str) and not isinstance(casuallm, AutoModelForCausalLM):
|
||||||
|
# from colossalai.inference.core.plugin import InferCheckpoint_io
|
||||||
|
|
||||||
cpt_io = InferCheckpoint_io()
|
# cpt_io = InferCheckpoint_io()
|
||||||
if_has_index_file, model_index_file = has_index_file(model_or_path)
|
# if_has_index_file, model_index_file = has_index_file(model_or_path)
|
||||||
assert if_has_index_file, "the model path is invalid"
|
# assert if_has_index_file, "the model path is invalid"
|
||||||
cpt_io.load_model(self.model, model_index_file)
|
# cpt_io.load_model(self.model, model_index_file)
|
||||||
|
|
||||||
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
|
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
|
||||||
peak_memory = init_gpu_memory - free_gpu_memory
|
peak_memory = init_gpu_memory - free_gpu_memory
|
||||||
|
@ -1,4 +1,3 @@
|
|||||||
import os
|
|
||||||
from typing import List, Tuple, Union
|
from typing import List, Tuple, Union
|
||||||
|
|
||||||
import rpyc
|
import rpyc
|
||||||
@ -19,7 +18,7 @@ from colossalai.inference.modeling.policy import (
|
|||||||
model_policy_map,
|
model_policy_map,
|
||||||
)
|
)
|
||||||
from colossalai.inference.sampler import search_tokens
|
from colossalai.inference.sampler import search_tokens
|
||||||
from colossalai.inference.utils import get_model_size, has_index_file
|
from colossalai.inference.utils import get_model_size
|
||||||
from colossalai.interface import ModelWrapper
|
from colossalai.interface import ModelWrapper
|
||||||
from colossalai.logging import get_dist_logger
|
from colossalai.logging import get_dist_logger
|
||||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||||
@ -178,15 +177,19 @@ class rpcWorkerService(rpyc.Service):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
if isinstance(model_or_path, str):
|
if isinstance(model_or_path, str):
|
||||||
is_local = os.path.isdir(model_or_path)
|
# is_local = os.path.isdir(model_or_path)
|
||||||
try:
|
try:
|
||||||
hf_config = AutoConfig.from_pretrained(model_or_path, trust_remote_code=True)
|
hf_config = AutoConfig.from_pretrained(model_or_path, trust_remote_code=True)
|
||||||
arch = getattr(hf_config, "architectures")[0]
|
arch = getattr(hf_config, "architectures")[0]
|
||||||
if is_local:
|
# NOTE(lry89757) Currently we load the model using transformers-api,
|
||||||
model = _SUPPORTED_MODELS[arch](hf_config)
|
# but we will use lazy tensor and checkpoint io to accelerate
|
||||||
else:
|
# the model load process in the future.
|
||||||
# load the real checkpoint
|
|
||||||
model = _SUPPORTED_MODELS[arch].from_pretrained(model_or_path, trust_remote_code=True)
|
model = _SUPPORTED_MODELS[arch].from_pretrained(model_or_path, trust_remote_code=True)
|
||||||
|
# if is_local:
|
||||||
|
# model = _SUPPORTED_MODELS[arch](hf_config)
|
||||||
|
# else:
|
||||||
|
# # load the real checkpoint
|
||||||
|
# model = _SUPPORTED_MODELS[arch].from_pretrained(model_or_path, trust_remote_code=True)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(
|
logger.error(
|
||||||
f"An exception occurred during loading model: {e}, model should be loaded by transformers\n"
|
f"An exception occurred during loading model: {e}, model should be loaded by transformers\n"
|
||||||
@ -235,13 +238,14 @@ class rpcWorkerService(rpyc.Service):
|
|||||||
f"After the shard, Rank: [{dist.get_rank()}], model size: {get_model_size(self.model)} GB, model's device is: {model.device}"
|
f"After the shard, Rank: [{dist.get_rank()}], model size: {get_model_size(self.model)} GB, model's device is: {model.device}"
|
||||||
)
|
)
|
||||||
|
|
||||||
if isinstance(model_or_path, str) and is_local:
|
# NOTE(lry89757) Deprecated currently, will reused when introduce lazy tensor
|
||||||
from colossalai.inference.core.plugin import InferCheckpoint_io
|
# if isinstance(model_or_path, str) and is_local:
|
||||||
|
# from colossalai.inference.core.plugin import InferCheckpoint_io
|
||||||
|
|
||||||
cpt_io = InferCheckpoint_io()
|
# cpt_io = InferCheckpoint_io()
|
||||||
if_has_index_file, model_index_file = has_index_file(model_or_path)
|
# if_has_index_file, model_index_file = has_index_file(model_or_path)
|
||||||
assert if_has_index_file, "the model path is invalid"
|
# assert if_has_index_file, "the model path is invalid"
|
||||||
cpt_io.load_model(self.model, model_index_file)
|
# cpt_io.load_model(self.model, model_index_file)
|
||||||
|
|
||||||
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
|
free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
|
||||||
peak_memory = init_gpu_memory - free_gpu_memory
|
peak_memory = init_gpu_memory - free_gpu_memory
|
||||||
|
@ -646,6 +646,7 @@ class NopadLlamaAttention(LlamaAttention, ParallelModule):
|
|||||||
def _load_from_state_dict(
|
def _load_from_state_dict(
|
||||||
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
||||||
):
|
):
|
||||||
|
if self.num_heads == self.num_key_value_heads:
|
||||||
# NOTE This is a hack to ensure we could load the right weight from LlamaAttention checkpoint due to the use of torch.stack(q_weight, k_weight, v_weight)
|
# NOTE This is a hack to ensure we could load the right weight from LlamaAttention checkpoint due to the use of torch.stack(q_weight, k_weight, v_weight)
|
||||||
for hook in self._load_state_dict_pre_hooks.values():
|
for hook in self._load_state_dict_pre_hooks.values():
|
||||||
hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
||||||
|
Loading…
Reference in New Issue
Block a user