mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-26 04:03:58 +00:00
[moe] test deepseek
This commit is contained in:
133
tests/test_moe/modelling/test_deepseek.py
Normal file
133
tests/test_moe/modelling/test_deepseek.py
Normal file
@@ -0,0 +1,133 @@
|
||||
import os
|
||||
import shutil
|
||||
from copy import deepcopy
|
||||
from typing import Tuple
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers import AutoConfig, AutoModel
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster.booster import Booster
|
||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing.random import seed_all
|
||||
from tests.test_moe.moe_utils import loose_close
|
||||
from tests.test_moe.test_moe_checkpoint import check_model_equal
|
||||
|
||||
NUM_BATCH = 4
|
||||
NUM_TOK_PER_BATCH, NUM_EXPERTS = 7, 4
|
||||
HIDDEN_SIZE_PER_HEAD = 4
|
||||
NUM_HEADS = 4
|
||||
TOP_K = 1
|
||||
|
||||
|
||||
@parameterize("config", [(1, 1, 1)])
|
||||
def run_zero_with_original_model(config: Tuple[int, ...]):
|
||||
stage, ep_size, tp_size = config
|
||||
dtype = torch.float16
|
||||
|
||||
rank = torch.distributed.get_rank()
|
||||
torch.cuda.set_device(dist.get_rank())
|
||||
|
||||
plugin = MoeHybridParallelPlugin(
|
||||
pp_size=1,
|
||||
tp_size=tp_size,
|
||||
moe_tp_size=tp_size,
|
||||
ep_size=ep_size,
|
||||
zero_stage=stage,
|
||||
overlap_communication=False,
|
||||
initial_scale=1,
|
||||
precision="fp32",
|
||||
)
|
||||
booster = Booster(plugin=plugin)
|
||||
|
||||
seed_all(10086)
|
||||
|
||||
config = AutoConfig.from_pretrained("deepseek-ai/deepseek-moe-16b-base", trust_remote_code=True)
|
||||
config.hidden_size = HIDDEN_SIZE_PER_HEAD * NUM_HEADS
|
||||
config.intermediate_size = HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2
|
||||
config.num_hidden_layers = 2
|
||||
config.num_attention_heads = NUM_HEADS
|
||||
config.num_key_value_heads = NUM_HEADS
|
||||
config.n_routed_experts = NUM_EXPERTS
|
||||
config.num_experts_per_tok = TOP_K
|
||||
torch_model = AutoModel.from_config(config, trust_remote_code=True).cuda().to(dtype)
|
||||
|
||||
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
|
||||
|
||||
zero_model = deepcopy(torch_model).to(dtype)
|
||||
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
|
||||
|
||||
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
|
||||
|
||||
# create different input
|
||||
seed_all(1453 + rank)
|
||||
|
||||
torch_model.train()
|
||||
zero_model.train()
|
||||
for _ in range(2):
|
||||
input_data = torch.rand(
|
||||
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
|
||||
).cuda()
|
||||
dist.all_reduce(input_data, group=plugin.tp_group) # tp requires duplicate input
|
||||
|
||||
zero_output = zero_model(inputs_embeds=input_data.to(dtype)).last_hidden_state.mean()
|
||||
zero_optimizer.backward(zero_output)
|
||||
zero_optimizer.step()
|
||||
zero_optimizer.zero_grad()
|
||||
dist.all_reduce(zero_output)
|
||||
|
||||
all_inputs = [torch.empty_like(input_data) for _ in range(dist.get_world_size())]
|
||||
dist.all_gather(all_inputs, input_data)
|
||||
|
||||
torch_output_sum = 0
|
||||
for input_data_ in all_inputs:
|
||||
torch_output = torch_model(inputs_embeds=input_data_.to(dtype)).last_hidden_state.mean()
|
||||
torch_output.backward()
|
||||
torch_output_sum += torch_output.detach()
|
||||
# avg dp grads
|
||||
for p in torch_model.parameters():
|
||||
if p.grad is not None:
|
||||
p.grad /= dist.get_world_size()
|
||||
torch_optimizer.step()
|
||||
torch_optimizer.zero_grad()
|
||||
|
||||
loose_close(zero_output, torch_output_sum, dtype=dtype)
|
||||
|
||||
# use checkpoint to load sharded zero model
|
||||
model_dir = "./test_deepseek"
|
||||
if dist.get_rank() == 0:
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
|
||||
dist.barrier()
|
||||
|
||||
booster.save_model(zero_model, model_dir, shard=True)
|
||||
|
||||
dist.barrier()
|
||||
|
||||
saved_model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).cuda()
|
||||
check_model_equal(torch_model, saved_model)
|
||||
|
||||
dist.barrier()
|
||||
if dist.get_rank() == 0:
|
||||
shutil.rmtree(model_dir)
|
||||
|
||||
print(f"{dist.get_rank()} test passed")
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
run_zero_with_original_model()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_mistral(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_mistral(world_size=4)
|
@@ -24,16 +24,6 @@ NUM_HEADS = 4
|
||||
TOP_K = 1
|
||||
|
||||
|
||||
def split_grad(grad, world_size):
|
||||
with torch.no_grad():
|
||||
grad = grad.clone().detach().flatten()
|
||||
padding_size = (world_size - grad.numel() % world_size) % world_size
|
||||
if padding_size > 0:
|
||||
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
||||
splited_grad = grad.split(grad.numel() // world_size)
|
||||
return splited_grad
|
||||
|
||||
|
||||
@parameterize("config", [(1, 1, 4), (1, 2, 2), (1, 4, 1)])
|
||||
def run_zero_with_original_model(config: Tuple[int, ...]):
|
||||
stage, ep_size, tp_size = config
|
||||
|
@@ -16,6 +16,7 @@ from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParall
|
||||
from colossalai.tensor.moe_tensor.api import is_moe_tensor
|
||||
from colossalai.testing import parameterize, spawn
|
||||
from colossalai.testing.utils import spawn
|
||||
from tests.test_moe.moe_utils import loose_close
|
||||
|
||||
tokens, n_experts = 7, 4
|
||||
hidden_size = 8
|
||||
@@ -25,7 +26,7 @@ top_k = 2
|
||||
def check_model_equal(model1, model2):
|
||||
assert set(model1.state_dict().keys()) == set(model2.state_dict().keys())
|
||||
for i, ((name, p1), p2) in enumerate(zip(model1.named_parameters(), model2.parameters())):
|
||||
if not torch.equal(p1.half(), p2.half()):
|
||||
if loose_close(p1, p2, p1.dtype):
|
||||
print(f"Model parameter {name} is not equal. is_moe_tensor: {is_moe_tensor(p1)}")
|
||||
raise AssertionError(f"Model parameter {name} is not equal")
|
||||
|
||||
|
@@ -21,16 +21,6 @@ NUM_HEADS = 4
|
||||
TOP_K = 2
|
||||
|
||||
|
||||
def split_grad(grad, world_size):
|
||||
with torch.no_grad():
|
||||
grad = grad.clone().detach().flatten()
|
||||
padding_size = (world_size - grad.numel() % world_size) % world_size
|
||||
if padding_size > 0:
|
||||
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
||||
splited_grad = grad.split(grad.numel() // world_size)
|
||||
return splited_grad
|
||||
|
||||
|
||||
@parameterize("stage", [1])
|
||||
@parameterize("ep_size", [1, 2, 4])
|
||||
def run_zero_with_original_model(stage: int, ep_size: int):
|
||||
|
@@ -14,21 +14,12 @@ from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing.random import seed_all
|
||||
from tests.test_moe.moe_utils import loose_close
|
||||
|
||||
NUM_BATCH=4
|
||||
NUM_BATCH = 4
|
||||
NUM_TOK_PER_BATCH, NUM_EXPERTS = 7, 4
|
||||
HIDDEN_SIZE_PER_HEAD = 4
|
||||
NUM_HEADS=2
|
||||
NUM_HEADS = 2
|
||||
TOP_K = 1
|
||||
|
||||
def split_grad(grad, world_size):
|
||||
with torch.no_grad():
|
||||
grad = grad.clone().detach().flatten()
|
||||
padding_size = (world_size - grad.numel() % world_size) % world_size
|
||||
if padding_size > 0:
|
||||
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
||||
splited_grad = grad.split(grad.numel() // world_size)
|
||||
return splited_grad
|
||||
|
||||
|
||||
@parameterize("stage", [1])
|
||||
@parameterize("ep_size", [1, 2, 4])
|
||||
@@ -39,12 +30,7 @@ def run_zero_with_original_model(stage: int, ep_size: int):
|
||||
torch.cuda.set_device(dist.get_rank())
|
||||
|
||||
plugin = MoeHybridParallelPlugin(
|
||||
pp_size=1,
|
||||
tp_size=1,
|
||||
ep_size=ep_size,
|
||||
zero_stage=stage,
|
||||
overlap_communication=False,
|
||||
initial_scale=1
|
||||
pp_size=1, tp_size=1, ep_size=ep_size, zero_stage=stage, overlap_communication=False, initial_scale=1
|
||||
)
|
||||
booster = Booster(plugin=plugin)
|
||||
|
||||
@@ -81,7 +67,9 @@ def run_zero_with_original_model(stage: int, ep_size: int):
|
||||
zero_model.train()
|
||||
for _ in range(2):
|
||||
# zero-dp forward
|
||||
input_data = torch.rand(NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True).cuda()
|
||||
input_data = torch.rand(
|
||||
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
|
||||
).cuda()
|
||||
zero_output = zero_model(inputs_embeds=input_data.to(dtype)).last_hidden_state.mean()
|
||||
# zero-dp backward
|
||||
zero_optimizer.backward(zero_output)
|
||||
|
Reference in New Issue
Block a user